Order-8 octagonal tiling

Order-8 octagonal tiling
Order-8 octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 88
Schläfli symbol {8,8}
Wythoff symbol 8 | 8 2
Coxeter diagram
Symmetry group [8,8], (*882)
Dual self dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-8 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,8} (eight octagons around each vertex) and is self-dual.

Symmetry

This tiling represents a hyperbolic kaleidoscope of 8 mirrors meeting at a point and bounding regular octagon fundamental domains. This symmetry by orbifold notation is called *44444444 with 8 order-4 mirror intersections. In Coxeter notation can be represented as [8,8*], removing two of three mirrors (passing through the octagon center) in the [8,8] symmetry.

Related polyhedra and tiling

This tiling is topologically related as a part of sequence of regular tilings with octagonal faces, starting with the octagonal tiling, with Schläfli symbol {8,n}, and Coxeter diagram , progressing to infinity.

n82 symmetry mutations of regular tilings: 8n
  • v
  • t
  • e
Space Spherical Compact hyperbolic Paracompact
Tiling
Config. 8.8 83 84 85 86 87 88 ...8
Regular tilings: {n,8}
  • v
  • t
  • e
Spherical Hyperbolic tilings

{2,8}

{3,8}

{4,8}

{5,8}

{6,8}

{7,8}

{8,8}
...
{∞,8}
Uniform octaoctagonal tilings
  • v
  • t
  • e
Symmetry: [8,8], (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8 V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
= = = =
=
=
=
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} hrr{8,8} sr{8,8}
Alternation duals
V(4.8)8 V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8 V(4.8)8 V46 V3.3.8.3.8

See also

Wikimedia Commons has media related to Order-8 octagonal tiling.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch
  • v
  • t
  • e


Other
Spherical
  • 2n
  • 33.n
  • V33.n
  • 42.n
  • V42.n
Regular
  • 2
  • 36
  • 44
  • 63
Semi-
regular
  • 32.4.3.4
  • V32.4.3.4
  • 33.42
  • 33.∞
  • 34.6
  • V34.6
  • 3.4.6.4
  • (3.6)2
  • 3.122
  • 42.∞
  • 4.6.12
  • 4.82
Hyper-
bolic