Pöschl–Teller potential

In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl[1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

Definition

In its symmetric form is explicitly given by[2]

Symmetric Pöschl–Teller potential: λ ( λ + 1 ) 2 sech 2 ( x ) {\displaystyle -{\frac {\lambda (\lambda +1)}{2}}\operatorname {sech} ^{2}(x)} . It shows the eigenvalues for μ=1, 2, 3, 4, 5, 6.
V ( x ) = λ ( λ + 1 ) 2 s e c h 2 ( x ) {\displaystyle V(x)=-{\frac {\lambda (\lambda +1)}{2}}\mathrm {sech} ^{2}(x)}

and the solutions of the time-independent Schrödinger equation

1 2 ψ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) {\displaystyle -{\frac {1}{2}}\psi ''(x)+V(x)\psi (x)=E\psi (x)}

with this potential can be found by virtue of the substitution u = t a n h ( x ) {\displaystyle u=\mathrm {tanh(x)} } , which yields

[ ( 1 u 2 ) ψ ( u ) ] + λ ( λ + 1 ) ψ ( u ) + 2 E 1 u 2 ψ ( u ) = 0 {\displaystyle \left[(1-u^{2})\psi '(u)\right]'+\lambda (\lambda +1)\psi (u)+{\frac {2E}{1-u^{2}}}\psi (u)=0} .

Thus the solutions ψ ( u ) {\displaystyle \psi (u)} are just the Legendre functions P λ μ ( tanh ( x ) ) {\displaystyle P_{\lambda }^{\mu }(\tanh(x))} with E = μ 2 2 {\displaystyle E=-{\frac {\mu ^{2}}{2}}} , and λ = 1 , 2 , 3 {\displaystyle \lambda =1,2,3\cdots } , μ = 1 , 2 , , λ 1 , λ {\displaystyle \mu =1,2,\cdots ,\lambda -1,\lambda } . Moreover, eigenvalues and scattering data can be explicitly computed.[3] In the special case of integer λ {\displaystyle \lambda } , the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries equation.[4]

The more general form of the potential is given by[2]

V ( x ) = λ ( λ + 1 ) 2 s e c h 2 ( x ) ν ( ν + 1 ) 2 c s c h 2 ( x ) . {\displaystyle V(x)=-{\frac {\lambda (\lambda +1)}{2}}\mathrm {sech} ^{2}(x)-{\frac {\nu (\nu +1)}{2}}\mathrm {csch} ^{2}(x).}

Rosen–Morse potential

A related potential is given by introducing an additional term:[5]

V ( x ) = λ ( λ + 1 ) 2 s e c h 2 ( x ) g tanh x . {\displaystyle V(x)=-{\frac {\lambda (\lambda +1)}{2}}\mathrm {sech} ^{2}(x)-g\tanh x.}

See also

References list

  1. ^ ""Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010" (PDF). Archived from the original (PDF) on 2017-01-18. Retrieved 2011-11-29.
  2. ^ a b Pöschl, G.; Teller, E. (1933). "Bemerkungen zur Quantenmechanik des anharmonischen Oszillators". Zeitschrift für Physik. 83 (3–4): 143–151. Bibcode:1933ZPhy...83..143P. doi:10.1007/BF01331132. S2CID 124830271.
  3. ^ Siegfried Flügge Practical Quantum Mechanics (Springer, 1998)
  4. ^ Lekner, John (2007). "Reflectionless eigenstates of the sech2 potential". American Journal of Physics. 875 (12): 1151–1157. Bibcode:2007AmJPh..75.1151L. doi:10.1119/1.2787015.
  5. ^ Barut, A. O.; Inomata, A.; Wilson, R. (1987). "Algebraic treatment of second Poschl-Teller, Morse-Rosen and Eckart equations". Journal of Physics A: Mathematical and General. 20 (13): 4083. Bibcode:1987JPhA...20.4083B. doi:10.1088/0305-4470/20/13/017. ISSN 0305-4470.

External links

  • Eigenstates for Pöschl-Teller Potentials


  • v
  • t
  • e
Stub icon

This mathematical physics-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e