Selberg sieve

Atle Selberg

In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

Description

In terms of sieve theory the Selberg sieve is of combinatorial type: that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an upper bound for the size of the sifted set.

Let A {\displaystyle A} be a set of positive integers x {\displaystyle \leq x} and let P {\displaystyle P} be a set of primes. Let A d {\displaystyle A_{d}} denote the set of elements of A {\displaystyle A} divisible by d {\displaystyle d} when d {\displaystyle d} is a product of distinct primes from P {\displaystyle P} . Further let A 1 {\displaystyle A_{1}} denote A {\displaystyle A} itself. Let z {\displaystyle z} be a positive real number and P ( z ) {\displaystyle P(z)} denote the product of the primes in P {\displaystyle P} which are z {\displaystyle \leq z} . The object of the sieve is to estimate

S ( A , P , z ) = | A p P ( z ) A p | . {\displaystyle S(A,P,z)=\left\vert A\setminus \bigcup _{p\mid P(z)}A_{p}\right\vert .}

We assume that |Ad| may be estimated by

| A d | = 1 f ( d ) X + R d . {\displaystyle \left\vert A_{d}\right\vert ={\frac {1}{f(d)}}X+R_{d}.}

where f is a multiplicative function and X   =   |A|. Let the function g be obtained from f by Möbius inversion, that is

g ( n ) = d n μ ( d ) f ( n / d ) {\displaystyle g(n)=\sum _{d\mid n}\mu (d)f(n/d)}
f ( n ) = d n g ( d ) {\displaystyle f(n)=\sum _{d\mid n}g(d)}

where μ is the Möbius function. Put

V ( z ) = d < z d P ( z ) 1 g ( d ) . {\displaystyle V(z)=\sum _{\begin{smallmatrix}d<z\\d\mid P(z)\end{smallmatrix}}{\frac {1}{g(d)}}.}

Then

S ( A , P , z ) X V ( z ) + O ( d 1 , d 2 < z d 1 , d 2 P ( z ) | R [ d 1 , d 2 ] | ) {\displaystyle S(A,P,z)\leq {\frac {X}{V(z)}}+O\left({\sum _{\begin{smallmatrix}d_{1},d_{2}<z\\d_{1},d_{2}\mid P(z)\end{smallmatrix}}\left\vert R_{[d_{1},d_{2}]}\right\vert }\right)}

where [ d 1 , d 2 ] {\displaystyle [d_{1},d_{2}]} denotes the least common multiple of d 1 {\displaystyle d_{1}} and d 2 {\displaystyle d_{2}} . It is often useful to estimate V ( z ) {\displaystyle V(z)} by the bound

V ( z ) d z 1 f ( d ) . {\displaystyle V(z)\geq \sum _{d\leq z}{\frac {1}{f(d)}}.\,}

Applications

References

  • Cojocaru, Alina Carmen; Murty, M. Ram (2005). An introduction to sieve methods and their applications. London Mathematical Society Student Texts. Vol. 66. Cambridge University Press. pp. 113–134. ISBN 0-521-61275-6. Zbl 1121.11063.
  • Diamond, Harold G.; Halberstam, Heini (2008). A Higher-Dimensional Sieve Method: with Procedures for Computing Sieve Functions. Cambridge Tracts in Mathematics. Vol. 177. With William F. Galway. Cambridge: Cambridge University Press. ISBN 978-0-521-89487-6. Zbl 1207.11099.
  • Greaves, George (2001). Sieves in number theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 43. Berlin: Springer-Verlag. ISBN 3-540-41647-1. Zbl 1003.11044.
  • Halberstam, Heini; Richert, H.E. (1974). Sieve Methods. London Mathematical Society Monographs. Vol. 4. Academic Press. ISBN 0-12-318250-6. Zbl 0298.10026.
  • Hooley, Christopher (1976). Applications of sieve methods to the theory of numbers. Cambridge Tracts in Mathematics. Vol. 70. Cambridge University Press. pp. 7–12. ISBN 0-521-20915-3. Zbl 0327.10044.
  • Selberg, Atle (1947). "On an elementary method in the theory of primes". Norske Vid. Selsk. Forh. Trondheim. 19: 64–67. ISSN 0368-6302. Zbl 0041.01903.