Superintegrable Hamiltonian system

In mathematics, a superintegrable Hamiltonian system is a Hamiltonian system on a 2 n {\displaystyle 2n} -dimensional symplectic manifold for which the following conditions hold:

(i) There exist k > n {\displaystyle k>n} independent integrals F i {\displaystyle F_{i}} of motion. Their level surfaces (invariant submanifolds) form a fibered manifold F : Z N = F ( Z ) {\displaystyle F:Z\to N=F(Z)} over a connected open subset N R k {\displaystyle N\subset \mathbb {R} ^{k}} .

(ii) There exist smooth real functions s i j {\displaystyle s_{ij}} on N {\displaystyle N} such that the Poisson bracket of integrals of motion reads { F i , F j } = s i j F {\displaystyle \{F_{i},F_{j}\}=s_{ij}\circ F} .

(iii) The matrix function s i j {\displaystyle s_{ij}} is of constant corank m = 2 n k {\displaystyle m=2n-k} on N {\displaystyle N} .

If k = n {\displaystyle k=n} , this is the case of a completely integrable Hamiltonian system. The Mishchenko-Fomenko theorem for superintegrable Hamiltonian systems generalizes the Liouville-Arnold theorem on action-angle coordinates of completely integrable Hamiltonian system as follows.

Let invariant submanifolds of a superintegrable Hamiltonian system be connected compact and mutually diffeomorphic. Then the fibered manifold F {\displaystyle F} is a fiber bundle in tori T m {\displaystyle T^{m}} . There exists an open neighbourhood U {\displaystyle U} of F {\displaystyle F} which is a trivial fiber bundle provided with the bundle (generalized action-angle) coordinates ( I A , p i , q i , ϕ A ) {\displaystyle (I_{A},p_{i},q^{i},\phi ^{A})} , A = 1 , , m {\displaystyle A=1,\ldots ,m} , i = 1 , , n m {\displaystyle i=1,\ldots ,n-m} such that ( ϕ A ) {\displaystyle (\phi ^{A})} are coordinates on T m {\displaystyle T^{m}} . These coordinates are the Darboux coordinates on a symplectic manifold U {\displaystyle U} . A Hamiltonian of a superintegrable system depends only on the action variables I A {\displaystyle I_{A}} which are the Casimir functions of the coinduced Poisson structure on F ( U ) {\displaystyle F(U)} .

The Liouville-Arnold theorem for completely integrable systems and the Mishchenko-Fomenko theorem for the superintegrable ones are generalized to the case of non-compact invariant submanifolds. They are diffeomorphic to a toroidal cylinder T m r × R r {\displaystyle T^{m-r}\times \mathbb {R} ^{r}} .

See also

References

  • Mishchenko, A., Fomenko, A., Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl. 12 (1978) 113. doi:10.1007/BF01076254
  • Bolsinov, A., Jovanovic, B., Noncommutative integrability, moment map and geodesic flows, Ann. Global Anal. Geom. 23 (2003) 305; arXiv:math-ph/0109031.
  • Fasso, F., Superintegrable Hamiltonian systems: geometry and perturbations, Acta Appl. Math. 87(2005) 93. doi:10.1007/s10440-005-1139-8
  • Fiorani, E., Sardanashvily, G., Global action-angle coordinates for completely integrable systems with non-compact invariant manifolds, J. Math. Phys. 48 (2007) 032901; arXiv:math/0610790.
  • Miller, W., Jr, Post, S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A 46 (2013), no. 42, 423001, doi:10.1088/1751-8113/46/42/423001 arXiv:1309.2694
  • Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric Methods in Classical and Quantum Mechanics (World Scientific, Singapore, 2010) ISBN 978-981-4313-72-8; arXiv:1303.5363.