Terremoto

Disambiguazione – Se stai cercando altri significati, vedi Terremoto (disambigua).
Disambiguazione – "Sisma" rimanda qui. Se stai cercando altri significati, vedi Sisma (disambigua).
Schema di generazione di un terremoto: l'improvviso spostamento di una massa rocciosa, di solito non superficiale, genera le onde sismiche che raggiungono in breve tempo la superficie terrestre facendo vibrare gli strati rocciosi e i terreni soprastanti

In geofisica, il terremoto (dal latino: terrae motus, che vuol dire "movimento della terra"), detto anche sisma o scossa tellurica (dal latino Tellus, dea romana della Terra), è una vibrazione o assestamento della crosta terrestre, provocato dallo spostamento improvviso di una massa rocciosa nel sottosuolo.

Tale spostamento è generato dalle forze di natura tettonica che agiscono costantemente all'interno della crosta terrestre provocando una lenta deformazione fino al raggiungimento del carico di rottura con conseguente liberazione di energia elastica in una zona interna della Terra detta ipocentro, tipicamente localizzato in corrispondenza di fratture preesistenti della crosta dette faglie. A partire dalla frattura creatasi, una serie di onde elastiche, dette onde sismiche, si propagano in tutte le direzioni dall'ipocentro, dando vita al fenomeno osservato in superficie con il luogo della superficie terrestre posto sulla verticale dell'ipocentro, detto epicentro, che è generalmente quello più interessato dal fenomeno. La branca della geofisica che studia questi fenomeni è la sismologia.

Quasi tutti i terremoti che avvengono sulla superficie terrestre sono concentrati in prossimità dei margini tra due placche tettoniche. Queste sono infatti le aree tettonicamente attive, dove le placche si muovono le une rispetto alle altre secondo modalità di scorrimento relativo, di allontanamento reciproco oppure di collisione. Tutte queste situazioni danno luogo a deformazioni e rotture della crosta terrestre (faglie), generando così i terremoti (terremoti interplacca). Meno frequentemente i terremoti avvengono lontano dalle zone di confine tra placche, per riassestamenti tettonici dovuti a fenomeni isostatici oppure alla riattivazione di strutture crostali profonde, o ancora alle prime fasi di formazione di sistemi di rift (terremoti intraplacca). Terremoti localizzati e di minor intensità sono registrabili in aree vulcaniche per effetto del movimento di masse magmatiche in profondità o durante fasi eruttive parossistiche. Anche fenomeni franosi di notevole entità (soprattutto di crollo) possono dare luogo a terremoti avvertibili strumentalmente o in qualche caso anche dalla popolazione residente (la registrazione di questi fenomeni fa parte dei sistemi di monitoraggio dei versanti e dei corpi di frana attivi). Vi possono essere anche terremoti generati da cause artificiali (di solito localizzati e di lieve entità), dovuti ad esplosioni nucleari, ad esplosioni determinate per scopi minerari (in cave e miniere sotterranee), alla prospezione geofisica (prospezioni sismiche) e all'iniezione in profondità di fluidi pressurizzati per la coltivazione di giacimenti (geotermici e di idrocarburi).

Secondo il modello della tettonica delle placche, il movimento delle placche è lento, costante e impercettibile (se non con strumenti appositi), e deforma le rocce sia in superficie sia nel sottosuolo. Tuttavia in alcuni momenti e in alcune aree, a causa delle forze interne (pressioni, tensioni e attriti) tra le masse rocciose, la deformazione continua si arresta e la superficie coinvolta accumula tensione ed energia per decine o centinaia di anni fino a che, al raggiungimento del carico di rottura, l'energia accumulata è sufficiente a superare le forze resistenti causando l'improvviso e repentino spostamento della massa rocciosa coinvolta. Tale movimento improvviso, che in pochi secondi rilascia energia accumulata per decine o centinaia di anni, genera così le onde sismiche e il fenomeno di terremoto associato.

Descrizione

Schema che illustra la generazione di un sisma secondo la teoria del rimbalzo elastico, per rilascio di energia dovuto al movimento relativo di masse di roccia lungo una faglia. Il comportamento della roccia rappresentato è elastico. A sinistra sono riportati diagrammi ideali sforzo-deformazione corrispondenti alle tre fasi.

L'osservazione dei fenomeni sismici in natura ha consentito agli studiosi nel corso di decenni di studio di individuare una sequenza di eventi ben precisa in seguito alla quale si producono i terremoti:

Curva della relazione sforzo-deformazione di un materiale dotato di proprietà elastica. Nella prima parte della curva (punti A-C) si ha comportamento elastico e la deformazione è reversibile. Dal punto A al punto B in particolare vi è un rapporto di tipo lineare (legge di Hooke); nella seconda parte il materiale ha notevoli deformazioni, non reversibili, per piccoli incrementi dello sforzo (comportamento plastico). Per ulteriore incremento dello sforzo si ha rottura.
La pressione litostatica agisce in tutte le direzioni e determina una riduzione di volume ma non deformazione.
  • Per effetto di complesse dinamiche relative all'attività geologica del pianeta, si producono all'interno delle rocce degli stati di sforzo che aumentano nel tempo.
  • La roccia, sotto l'effetto di questi sforzi, subisce una deformazione che aumenta proporzionalmente all'energia accumulata, fino al raggiungimento del limite di rottura.
  • A questo punto, si ha la rottura della massa rocciosa in due parti mediante una frattura lungo la quale si ha un movimento relativo dei due blocchi (faglia) con liberazione improvvisa di energia. Questa energia viene in parte dissipata come lavoro per compiere lo spostamento, in parte sotto forma di calore e in parte si propaga sotto forma di onde sismiche.

La sequenza di eventi descritta è oggetto della teoria del rimbalzo elastico (elastic rebound). Questa teoria spiega i terremoti mediante un modello che considera la massa rocciosa interessata dalla deformazione come un corpo solido elastico (allo stesso modo di una molla sotto l'effetto di una sollecitazione).

In fisica, l'elasticità è la proprietà che permette ad un corpo di deformarsi sotto l'azione di una forza esterna e di riacquisire, se le deformazioni non risultano eccessive, la sua forma originale al venir meno della causa sollecitante. Se il corpo, cessata la sollecitazione, riassume esattamente la configurazione iniziale è detto perfettamente elastico. La sollecitazione massima che garantisce il comportamento elastico del materiale è detta limite di elasticità e, nel caso venga superata, si entra nel campo di comportamento plastico, nel quale il corpo subisce una deformazione irreversibile (cioè conserva la deformazione anche una volta cessata la sollecitazione). Per un ulteriore incremento della sollecitazione si ha rottura del materiale. L'estensione dei campi elastico e plastico dipende dal tipo di materiale, dalle condizioni ambientali (ad esempio pressione e temperatura), e anche dalla modalità di applicazione della sollecitazione.
Per diversi tipi di rocce alle condizioni della superficie terrestre (come ad esempio calcari, dolomie, rocce detritiche cementate come le arenarie, la maggior parte delle rocce cristalline come i graniti e i basalti) il comportamento si può definire come prevalentemente elastico. Altre, come le rocce argillose o le rocce saline, possono avere un comportamento plastico. Il comportamento dipende anche da diverse variabili, per la maggior parte collegate tra loro:

  • Profondità. In superficie le rocce tendono a fratturarsi, mentre nel sottosuolo tendono a deformarsi. Questo dipende dalla temperatura e dalla pressione, che aumentano con la profondità.
  • Pressione. Un certo volume di roccia posto in profondità è sottoposto ad una pressione dovuta al peso delle rocce sovrastanti. Questa pressione agisce sia verticalmente (e in condizioni normali questa è la componente dominante), sia orizzontalmente in tutte le direzioni (e questa è la pressione "confinante" che, contrastando gli effetti della pressione verticale, impedisce che la roccia si fratturi o si deformi lateralmente sotto il peso della colonna di roccia soprastante). Questa pressione (definita pressione litostatica), agendo in tutte le direzioni determina una diminuzione di volume della roccia, senza deformazione. Pertanto, l'aumento della pressione con la profondità si oppone alla rottura della roccia e favorisce un comportamento plastico.
  • Temperatura. L'aumento del calore in profondità fa aumentare il moto delle particelle e determina il rilascio di acqua, favorendo quindi il comportamento plastico.
  • Acqua. La presenza di acqua aumenta la mobilità delle molecole che compongono le rocce, e inoltre agisce come "lubrificante" attenuando gli attriti tra le particelle, favorendo in tal modo un comportamento plastico.
  • Tempo. Uno sforzo applicato in tempi molto lunghi può portare ad un comportamento plastico anche in rocce che sono normalmente fragili, mentre sollecitazioni rapide e improvvise portano a rottura.

Quando l'entità della sollecitazione supera quella delle forze di coesione della roccia, si ha la rottura lungo un piano di taglio (faglia) e una deformazione irreversibile, con spostamento relativo delle masse rocciose ai due lati del piano di faglia. L'energia elastica si libera quindi improvvisamente come calore (causato dall'attrito lungo la superficie di faglia) e come movimento oscillatorio violento delle masse rocciose, che si propaga in tutte le direzioni sotto forma di onde elastiche concentriche a partire dal punto di rottura.

Un terremoto (o sisma) ha origine quando l'interazione tra due zolle crostali provoca la rottura della crosta stessa lungo una superficie di faglia con subitaneo movimento relativo dei due blocchi risultanti. Questo fenomeno provoca una rapida vibrazione della crosta terrestre capace di sprigionare quantità elevatissime di energia, indipendentemente dagli effetti che provoca. Ogni giorno sulla Terra si verificano migliaia di terremoti: sperimentalmente si osserva che la maggioranza di terremoti al mondo, così come di eruzioni vulcaniche, avviene lungo la cosiddetta cintura di fuoco pacifica, le dorsali oceaniche e le zone di subduzione o di confine tra placche tettoniche e quindi interessa spesso la crosta oceanica come zona di innesco o fratturazione. Solo qualche decina sono percepiti dalla popolazione e la maggior parte di questi ultimi causano poco o nessun danno. La durata media di una scossa è molto al di sotto dei 30 secondi; per i terremoti più forti può però arrivare fino a qualche minuto.

Mappa delle zone sismiche terrestri

La sorgente del sisma è generalmente distribuita in una zona interna della crosta terrestre. Nel caso dei terremoti più devastanti questa può avere un'estensione anche dell'ordine di un migliaio di chilometri ma è idealmente possibile identificare un punto preciso dal quale le onde sismiche hanno avuto origine: questo si chiama "ipocentro" e qui si è originato il movimento a partire dalla frattura preesistente (faglia) o la sua improvvisa generazione. La proiezione verticale dell'ipocentro sulla superficie terrestre viene invece detta "epicentro", ed è il punto in cui di solito si verificano i danni maggiori. Le onde elastiche che si propagano durante un terremoto sono di diverso tipo e in alcuni casi possono risultare in un movimento prevalentemente orizzontale (scossa "ondulatoria") o verticale del terreno (scossa "sussultoria").

Alcuni terremoti si manifestano o sono preceduti da sciami sismici (foreshocks) più o meno lunghi e intensi, caratterizzati da più terremoti ripetuti nel tempo e particolarmente circoscritti in una determinata area, altri invece si manifestano subito e improvvisamente con una o più scosse principali (main shock); un'altra forma sono le sequenze sismiche, caratterizzate ciascuna da più terremoti sprigionati in successione ravvicinata e non circoscritti in una determinata zona.[1] I terremoti di maggiore magnitudo sono di solito accompagnati da eventi secondari (non necessariamente meno distruttivi) che seguono la scossa principale e si definiscono repliche (aftershocks, spesso definite erroneamente scosse di assestamento). Quando più eventi si verificano contemporaneamente o quasi, può trattarsi di terremoti indotti (il sisma innesca la fratturazione di altra roccia che era già prossima al punto critico di rottura).

Un terremoto, inoltre, può essere accompagnato da forti rumori che possono ricordare boati, rombi, tuoni, sequenze di spari, eccetera: questi suoni sono dovuti al passaggio delle onde sismiche all'atmosfera e sono più intensi in vicinanza dell'epicentro.

Lo stesso argomento in dettaglio: Teoria della reazione elastica.

Cause

Mappa globale degli eventi sismici dal 1900 al 2017. I simboli sono differenziati per magnitudine degli eventi.
Mappa globale dei centri vulcanici attivi (punti in rosso). sono riportati anche i limiti delle placche tettoniche.

Terremoti di origine tettonica

questi terremoti sono di gran lunga i più frequenti e intensi, e si originano nei punti della crosta terrestre ove si accumula energia meccanica. Guardando una mappa degli epicentri dei terremoti a scala globale, si vede immediatamente che i sismi non sono distribuiti uniformemente sulla superficie terrestre, ma si localizzano in fasce ristrette e allungate, nelle quali sono anche localizzati la maggior parte dei vulcani attivi. Secondo la teoria della tettonica delle placche queste fasce costituiscono i limiti di placche tettoniche rigide nelle quali è suddivisa la litosfera terrestre e che giacciono su un substrato più denso, viscoso e semifluido (il mantello superiore terrestre).
I margini delle placche tettoniche sono la sede della maggior parte dei terremoti. Si tratta di strutture crostali (cioè che interessano l'intero spessore della crosta terrestre), a grande e grandissima scala (decine, centinaia, migliaia di chilometri in lunghezza e ampiezza; chilometri e decine di chilometri in profondità) e che costituiscono i "confini" tra le placche stesse. L'interazione tra le placche tettoniche, che avviene in corrispondenza dei loro margini, è all'origine della maggior parte dei terremoti. Questa interazione avviene con diverse modalità, a seconda del tipo di movimento relativo delle placche. In estrema sintesi:

  • Margini divergenti. Quando i margini di due placche tendono ad allontanarsi reciprocamente, muovendosi in direzioni opposte, sotto la spinta di nuova crosta che si aggiunge lungo i margini da eruzioni di magma originate direttamente del mantello. Gli sforzi in gioco sono di tipo distensivo o di trazione (da forze opposte e dirette verso l'esterno rispetto alla superficie di riferimento). Lungo questo tipo di margini si generano terremoti superficiali e a basso contenuto di energia. La "dorsale" presente nella fascia centrale dell'Oceano Atlantico (dorsale medio-atlantica) è un classico esempio di questo tipo di margine.
  • Margini convergenti. Quando due placche premono l'una contro l'altra. In questo caso, si ha generalmente l'incuneamento di una delle placche sotto l'altra e la sua consumazione all'interno del mantello. In questo caso gli sforzi sono di tipo compressivo (da forze opposte e dirette verso la superficie di riferimento). Lungo questi margini si generano terremoti a varie profondità (anche molto profondi, fino ad alcune centinaia di chilometri) e ad alto contenuto di energia. Il margine occidentale dell'America Meridionale, con la catena andina, oppure il margine costiero adriatico appenninico, sono esempi di questo tipo di interazione.
  • Margini trasformi. Quando le placche scorrono orizzontalmente "strisciando" l'una contro l'altra, quindi non si genera né si distrugge crosta terrestre, ma si ha deformazione lungo il margine per attrito. Il movimento può essere in direzioni opposte oppure nella stessa direzione (ma con velocità diverse). In questi casi gli sforzi sono soprattutto tangenziali ai margini, anche se localmente possiamo avere componenti compressive o distensive. In corrispondenza di questi margini si generano terremoti superficiali ma con contenuto energetico anche molto elevato. La famosa Faglia di Sant'Andrea che decorre nella fascia costiera della California, altamente sismica, è un margine di questo tipo.
  • Schema di margine convergente (distruttivo).
    Schema di margine convergente (distruttivo).
  • Schema di margine divergente (costruttivo).
    Schema di margine divergente (costruttivo).
  • Schema di margine trasforme (conservativo) con movimento in direzioni opposte.
    Schema di margine trasforme (conservativo) con movimento in direzioni opposte.
  • Schema di margine trasforme (conservativo) con movimento nella stessa direzione.
    Schema di margine trasforme (conservativo) con movimento nella stessa direzione.

I terremoti di origine tettonica sono connessi direttamente all'attività di faglie (fratture della crosta terrestre con movimento relativo delle masse rocciose), che si generano per sollecitazioni tettoniche. Sono strutture a scala da piccola e piccolissima (pochi millimetri o centimetri) a grande (fino a decine e centinaia di chilometri, in alcuni casi fino a migliaia di chilometri). Sono generate per la maggior parte dall'interazione tra le placche tettoniche lungo i margini delle stesse e costituiscono sorgenti sismiche naturali. Si classificano a seconda del tipo di movimento relativo delle masse rocciose. Si distinguono tre tipi di faglie, a seconda della direzione di movimento relativo.

  • Faglia diretta (o faglia normale). In questo caso, uno dei due blocchi si porta in posizione ribassata rispetto all'altro. Generalmente in questo tipo di faglie il piano di faglia è inclinato, quindi si può distinguere il blocco sottostante il piano di faglia (muro) dal blocco soprastante il piano di faglia (tetto). In questo caso quindi il tetto scende rispetto al muro. Si tratta di faglie tipiche di un regime tettonico distensivo e di margini divergenti. Queste faglie sono nella maggior parte dei casi in serie a "gradinata" (cioè ribassano gradualmente, per piani successivi, una parte di territorio rispetto ad un'altra), oppure definiscono un andamento ad "alti" strutturali (horst) alternati a "bassi" strutturali o fosse (graben).
  • Faglia inversa. In questo caso il "tetto" risale lungo il "muro". Sono faglie tipiche di un regime tettonico compressivo e di margini convergenti. Molto frequentemente queste faglie sono associate a pieghe tettoniche, e ne interessano, dislocandoli, i fianchi.
  • Faglia trascorrente. In questo tipo di faglia i margini dei due blocchi scorrono orizzontalmente. Il piano di faglia è spesso subverticale. Le faglie di questo tipo si distinguono in trascorrenti destre e trascorrenti sinistre. Il criterio di distinzione è semplice: se ponendoci da uno qualunque dei due della linea di faglia il lato opposto risulta dislocato verso destra, sarà una trascorrente destra; viceversa nel caso di una trascorrente sinistra. Queste faglie sono legate a sforzi di traslazione che agiscono sui due blocchi, e a margini trascorrenti.

E' opportuno sottolineare che in realtà nella maggior parte dei casi si trovano faglie di tipo misto in cui prevale di volta in volta una delle tre componenti descritte. Ovvero: in una faglia trascorrente vi possono essere componenti di movimento di tipo compressivo o viceversa distensivo, o anche entrambi in diversi settori della linea di faglia (in questo caso si avrà un movimento rotazionale lungo il piano di faglia). O ancora: in faglie di tipo normale o inverso possono esservi componenti di traslazione (in questi casi si avrà un movimento obliquo del tetto rispetto al muro).
Inoltre, anche in un regime compressivo localmente si possono avere faglie normali, e viceversa in un regime distensivo potremmo avere localmente faglie con componente prevalentemente inversa. Per comprendere a fondo lo stile strutturale di un territorio occorrono studi molto accurati di tipo statistico basati su misure quantitative di orientazione nello spazio dei piani di faglia e dei movimenti relativi, basati sia su dati di campagna sia su dati indiretti (pozzi e prospezioni sismiche). Il processo di formazione e sviluppo della faglia, nonché dei terremoti stessi, è noto come fagliazione e può essere studiato attraverso tecniche di analisi proprie della meccanica della frattura.

  • Faglia trascorrente sinistra (a sinistra) e destra (a destra).
    Faglia trascorrente sinistra (a sinistra) e destra (a destra).
  • Faglia trascorrente sinistra (Cina).
    Faglia trascorrente sinistra (Cina).
  • Veduta aerea della Faglia si S. Andrea (California, USA).
    Veduta aerea della Faglia si S. Andrea (California, USA).
  • Animazione che mostra il movimento di una faglia trascorrente.
    Animazione che mostra il movimento di una faglia trascorrente.
  • Faglie normali con stile tettonico a "horst e graben" (sinistra) e a gradinata (a destra).
    Faglie normali con stile tettonico a "horst e graben" (sinistra) e a gradinata (a destra).
  • Stile tettonico a horst e graben.
    Stile tettonico a horst e graben.
  • Faglie normali antitetiche che individuano un "graben" (Spagna).
    Faglie normali antitetiche che individuano un "graben" (Spagna).
  • Faglie normale (sopra) e inversa (sotto). Sovente si ha deformazione degli strati di roccia ("uncinatura") nei dintorni del piano di scorrimento. L'uncinatura dà la direzione del movimento relativo.
    Faglie normale (sopra) e inversa (sotto). Sovente si ha deformazione degli strati di roccia ("uncinatura") nei dintorni del piano di scorrimento. L'uncinatura dà la direzione del movimento relativo.
  • Faglia normale con movimento obliquo dovuto a una componente traslativa.
    Faglia normale con movimento obliquo dovuto a una componente traslativa.
  • Faglia inversa con tipica "uncinatura" degli strati nel "tetto" (traslato verso l'alto). Catalogna.
    Faglia inversa con tipica "uncinatura" degli strati nel "tetto" (traslato verso l'alto). Catalogna.
  • Faglia di Nojima (Giappone). E' una faglia inversa (compressiva), responsabile di un terremoto di elevata magnitudine nel 1995.
    Faglia di Nojima (Giappone). E' una faglia inversa (compressiva), responsabile di un terremoto di elevata magnitudine nel 1995.
  • Faglia inversa a basso angolo ("sovrascorrimento"). La deformazione del "tetto" provoca il piegamento degli strati.
    Faglia inversa a basso angolo ("sovrascorrimento"). La deformazione del "tetto" provoca il piegamento degli strati.

Terremoti di origine vulcanica

Ove sono centri vulcanici attivi, è molto frequente registrare terremoti a bassa intensità, dovuti a spostamenti delle masse di magma presenti in profondità in conseguenza di movimenti tettonici. Terremoti di magnitudine più elevata possono essere invece la conseguenza di attività vulcanica parossistica (eruttiva). Le eruzioni vulcaniche sono spesso precedute da una fitta sequenza di eventi sismici locali, la cui frequenza e intensità si accentua progressivamente prima del manifestarsi del fenomeno eruttivo.

Il processo di penetrazione e risalita del magma si realizza quando la pressione magmatica diviene maggiore della resistenza opposta dalle rocce incassanti. In questo caso, il magma risale progressivamente dalla camera magmatica nel condotto vulcanico determinando un rigonfiamento della struttura vulcanica e un accumulo di tensione, con aumento dell'attività sismica mano a mano che il magma risale verso la superficie facendosi strada attraverso le rocce[2]. La fase finale di risalita del magma è spesso quella che dà origine ai terremoti di magnitudine maggiore. I sismi indotti dall'attività magmatica in quest'ultima fase possono indurre frane e crolli locali, che talora possono coinvolgere anche intere sezioni dell'edificio vulcanico. Questo processo culmina nell'eruzione a giorno del magma. In seguito all'evento eruttivo, l'apparato vulcanico ritrova un equilibrio ad un livello di tensione inferiore.

Le scosse sismiche possono essere considerate come eventi precursori di fenomeni eruttivi, e nelle aree con attività vulcanica sono attentamente monitorate insieme ad altri parametri potenzialmente indicativi (deformazioni del suolo, variazioni della temperatura, del chimismo delle emissioni gassose, variazioni gravimetriche). E' opportuno però sottolineare che le eruzioni non sono necessariamente precedute da eventi sismici significativi (dipende da molti fattori, come la tipologia e il chimismo dell'attività vulcanica e l'attività tettonica correlata), e che va considerato il quadro d'insieme dei parametri per una previsione attendibile. Inoltre, non è ancora possibile sostanzialmente determinare con precisione il momento di un evento eruttivo. La previsione per questo tipo di eventi è probabilistica, e le ricerche in questo campo sono volte a fornire elementi per la rilevazione precoce della probabilità di eruzione. Questo approccio prevede la definizione di fasce di territorio a rischio crescente e di diversi gradi di allertamento, fino all'eventuale sgombero della popolazione.

  • Il M. St. Helens il giorno prima dell'eruzione catastrofica del 18 maggio 1980.
    Il M. St. Helens il giorno prima dell'eruzione catastrofica del 18 maggio 1980.
  • Attività sismica (frequenza dei terremoti) registrata nel mese di marzo 1980 sul M. St. Helens.
    Attività sismica (frequenza dei terremoti) registrata nel mese di marzo 1980 sul M. St. Helens.
  • Diagramma dei terremoti di intensità superiore a 2.5 gradi di magnitudine della scala Richter (linea in nero) e della produzione giornaliera di energia (istogramma pieno) nel periodo da marzo a maggio 1980.
    Diagramma dei terremoti di intensità superiore a 2.5 gradi di magnitudine della scala Richter (linea in nero) e della produzione giornaliera di energia (istogramma pieno) nel periodo da marzo a maggio 1980.
  • Il M. St. Helens dopo l'eruzione. Visibile il collasso del fianco nord e l'accumulo di frana.
    Il M. St. Helens dopo l'eruzione. Visibile il collasso del fianco nord e l'accumulo di frana.

Terremoti di origine gravitativa (crollo)

Frane (soprattutto frane di crollo), se di notevole entità, possono dare origine a sismi avvertibili. La frana del Monte Toc, che il 9 ottobre 1963 causò il disastro del Vajont (Val Piave, Veneto) diede origine ad un evento sismico che venne registrato da diversi sismografi nel nord Italia. Scosse furono avvertite anche nei mesi precedenti il disastro, causate dal movimento della massa di roccia. Eventi simili possono anche essere la conseguenza di crolli di cavità sotterranee (grotte naturali o anche gallerie e vani sotterranei artificiali). Questi terremoti sono molto superficiali, localizzati e di bassa magnitudine.
In questo caso, le scosse sismiche possono essere considerate potenzialmente come eventi precursori del fenomeno franoso, e la loro rilevazione fa parte del monitoraggio della stabilità dei versanti e dei corpi di frana.

Terremoti di origine artificiale

Vi possono essere anche terremoti attribuibili a cause artificiali. Le esplosioni dovute a test nucleari (sia in atmosfera che sotterranee) danno origine ad eventi sismici potenzialmente riconoscibili in base alle caratteristiche del loro segnale; i criteri distintivi rispetto a terremoti naturali sono studiati allo scopo di rilevare eventuali violazioni dei trattati internazionali attualmente in vigore sugli esperimenti nucleari, o test condotti da paesi non aderenti (oppure da compagini di natura terroristica).
Molto più comuni sono le esplosioni eseguite scopi minerari (in cave o miniere) o per l'escavazione di gallerie artificiali, o ancora per l'esecuzione di prospezioni sismiche di sottosuolo a scopo di ricerca o per l'industria estrattiva degli idrocarburi (per quest'ultimo scopo però negli ultimi decenni si tende ad evitare l'uso di esplosivi e ad utilizzare vibroseis: grandi vibratori a piastra montati su autocarri). In tutti questi casi si producono generalmente scosse sismiche indotte lievi, il più delle volte avvertibili come leggere vibrazioni del suolo (a meno che non si sia molto vicini alla sorgente dell'energia sismica, ovvero all'esplosione o al dispositivo vibrante).
La coltivazione di alcuni tipi di giacimenti di idrocarburi (in rocce a bassa permeabilità) richiede la fratturazione delle rocce serbatoio che contengono il petrolio o il gas allo scopo di incrementarne la permeabilità per ottenere una produzione sufficientemente economica. La fratturazione delle rocce avviene per iniezione di fluidi ad alta pressione (fratturazione idraulica). Questa attività può indurre terremoti di lieve entità (microsismi), la cui magnitudine aumenta quanto più il giacimento è superficiale, e che in alcuni casi sono avvertibili dalla popolazione.

Le onde sismiche

Lo stesso argomento in dettaglio: Onde sismiche.

Le onde sismiche sono onde elastiche. In fisica un'onda elastica è un particolare tipo di onda meccanica (che si propaga cioè in un mezzo materiale) in cui le caratteristiche fisiche del mezzo sono di tipo elastico, ovvero si ha proporzionalità diretta tra la deformazione lo sforzo applicato (legge di Hooke). La propagazione di un'onda elastica implica una propagazione di energia, mentre non si ha trasporto di materia.
Un'onda può quindi essere definita come una perturbazione elastica che si propaga da punto a punto attraverso un materiale, o sulla sua superficie. Le molecole del materiale si spostano sotto l'effetto della perturbazione ma una una volta passata la perturbazione ritornano nella posizione di partenza. Non si ha quindi uno spostamento definitivo, se non nel punto di rottura in cui ha avuto origine la perturbazione (nel caso delle rocce si tratta generalmente di una faglia). Le onde sismiche naturali si dividono principalmente in due grandi categorie, in funzione di come percorrono il materiale su cui si esercita la perturbazione. Si originano nell'ipocentro (onde profonde), si propagano in tutte le direzioni come fronti d'onda sferici e quando raggiungono la superficie terrestre nell'epicentro, danno origine a onde superficiali.

Onde profonde

Sono le onde che si originano nell'ipocentro. Sono anche definite onde di volume, perché si propagano in tutte le direzioni e quindi interessano un volume di roccia. Si tratta delle onde P (primarie) ed S (secondarie).

  • Onde P (primarie): sono le più veloci. Sono onde compressionali, definibili anche come onde longitudinali. Sono simili alle onde acustiche. La loro modalità di propagazione corrisponde a successive compressioni e rarefazioni del mezzo in cui viaggiano: al loro passaggio le particelle del materiale attraversato compiono un moto oscillatorio nella direzione di propagazione dell'onda. Sono le più veloci fra le onde generate da un terremoto e, dunque, le prime che vengono avvertite da una stazione sismica, da cui il nome onde primarie. Possono propagarsi sia nei mezzi solidi che nei fluidi (entrambi dotati di resistenza alla compressione).
  • Onde S (secondarie): sono meno veloci delle onde P (raggiungono velocità che si aggirano solitamente intorno al 60-70% della velocità delle Onde P), quindi vengono avvertite o registrate dopo queste ultime. Si tratta di onde trasversali che provocano nel materiale attraversato oscillazioni perpendicolari alla loro direzione di propagazione. Si possono immaginare come le onde che si propagano lungo una corda di lunghezza finita, che viene fatta oscillare muovendone le due estremità. Un'importante caratteristica di queste onde è che non possono propagarsi in mezzi fluidi (che non sono dotati di rigidità e non hanno alcuna resistenza elastica a sforzi di taglio). Non è possibile dunque riscontrarle ad esempio entro il magma presente nel serbatoio magmatico di un vulcano o nel nucleo esterno della terra. Questa caratteristica è stata storicamente molto importante per gli studi geofisici riguardanti la composizione in profondità della terra.

Ogni tipo di materiale (quindi anche di roccia) ha un valore di velocità (o un intervallo di valori) caratteristico per le Onde P e le Onde S.

  • Propagazione di onde compressionali (longitudinali) piane (Onde P).
    Propagazione di onde compressionali (longitudinali) piane (Onde P).
  • Propagazione di onde compressionali sferiche (Onde P), rappresentata su una griglia bidimensionale.
    Propagazione di onde compressionali sferiche (Onde P), rappresentata su una griglia bidimensionale.
  • Propagazione di onde trasversali piane (Onde S).
    Propagazione di onde trasversali piane (Onde S).
  • Propagazione di onde trasversali sferiche (Onde S), rappresentata su una griglia bidimensionale.
    Propagazione di onde trasversali sferiche (Onde S), rappresentata su una griglia bidimensionale.
  • Propagazione di Onde P ed S piane, originate dallo stesso evento. Nota che le Onde P all'inizio della simulazione sono molto vicine alle S e successivamente le precedono sempre più.
    Propagazione di Onde P ed S piane, originate dallo stesso evento. Nota che le Onde P all'inizio della simulazione sono molto vicine alle S e successivamente le precedono sempre più.
Esempio di sismogramma derivato da un terremoto, con gli arrivi successivi dei vari tipi di onde sismiche nel tempo. Alla stazione di misura arrivano prima le Onde P, poi le Onde S e infine le onde superficiali, caratterizzate dalla maggiore ampiezza ed energia e che causano lo spostamento maggiore del suolo.

Onde superficiali

Quando le onde di volume intersecano una superficie che separa due mezzi con caratteristiche di densità e velocità sismica diverse, in parte vengono riflesse e in parte generano altri tipi di onde noti come onde superficiali (o onde di superficie o anche Onde L). Queste onde si propagano prevalentemente lungo la superficie di separazione tra i due mezzi, e la loro energia decade rapidamente allontanandosi dalla superficie stessa.
La superficie che ci interessa principalmente per quanto riguarda gli eventi sismici è ovviamente la superficie terrestre, che separa le rocce crostali dall'atmosfera. L'ampiezza e l'energia delle onde superficiali decade molto rapidamente con la profondità (secondo una legge esponenziale). Quindi i loro fronti d'onda non sono più sferici (come nel caso delle onde di volume) ma si possono considerare cilindrici (con un'altezza molto ridotta). La velocità delle onde di superficie è inferiore alla velocità delle onde di volume, per cui (specialmente se l'evento è distante) il loro arrivo è successivo all'arrivo delle Onde P ed S. D'altro canto, l'ampiezza e quindi l'energia associata, di queste onde è notevolmente maggiore di quella delle onde di volume.
Le onde di superficie che si generano nell' epicentro a causa dell'arrivo delle onde P ed S. Sono le onde più pericolose, quelle che causano la maggior parte dei danni nei terremoti. Sono di due tipi:

  • Onde di Rayleigh. Sono generate dall'interazione delle onde P e onde S sulla superficie della terra, e viaggiano con una velocità che è più bassa della velocità delle onde P e S. Sotto l'azione di queste onde le particelle della superficie si muovono lungo orbite ellittiche in piani normali alla superficie e paralleli alla direzione di propagazione, secondo un moto retrogrado (cioè nel verso contrario alla propagazione delle onde). Le onde di Rayleigh causano movimenti sussultori.
  • Onde di Love. Sono onde di taglio orizzontali; la loro massima ampiezza si evidenzia in superficie e decade rapidamente con la profondità. Sono onde sismiche superficiali che causano uno spostamento orizzontale della terra durante un terremoto. Le onde di Love viaggiano con una velocità minore delle onde P o S, ma sono più veloci delle onde di Rayleigh.
  • Onde superficiali Rayleigh
    Onde superficiali Rayleigh
  • Onde superficiali di Love
    Onde superficiali di Love

Rilevazione e misurazione

Lo stesso argomento in dettaglio: Scala sismica, Sismografo e Sismogramma.
Sismografo

Le onde sismiche sono rilevabili e misurabili attraverso particolari strumenti detti sismografi, usati comunemente dai sismologi, e visualizzabili su sismogrammi; l'elaborazione incrociata dei dati di più sismografi sparsi su un territorio a una certa distanza dal sisma consente di stimare in maniera abbastanza accurata l'epicentro, l'ipocentro e l'intensità del sisma; quest'ultima può essere valutata attraverso le cosiddette scale sismiche, principalmente la scala Richter, la scala Mercalli e la scala di magnitudo del momento sismico.

Il riconoscimento dell'orientamento di arrivo delle scosse lungo i tre piani di riferimento, e la comprensione se il primo arrivo della scossa sia stato di tipo compressivo o espansivo permette di determinare il meccanismo focale della scossa e quindi di comprendere che tipo di faglia ha originato il terremoto.

Lo spostamento tettonico della crosta terrestre nelle tre coordinate spaziali in seguito a un forte terremoto può essere misurato accuratamente attraverso tecniche di telerilevamento quali le rilevazioni geodetiche e l'interferometria radar-satellitare tramite SAR nell'intera area colpita a partire dall'epicentro.

Effetti e danni

Lo stesso argomento in dettaglio: Maremoto, Risposta sismica locale ed Effetti di sito.
Danni provocati da un terremoto
Il disallineamento dei rocchi delle colonne del Tempio di Efesto è attribuito all'effetto sull'edificio di terremoti avvenuti nel passato[3]

I terremoti sono gli eventi naturali di gran lunga più potenti sulla Terra; i sismi possono rilasciare in pochi secondi un'energia superiore a migliaia di bombe atomiche, solitamente misurata in termini di momento sismico. A tal riguardo basti pensare che un terremoto riesce a spostare in pochi secondi volumi di roccia di centinaia di chilometri cubi.

In conseguenza di ciò i terremoti possono causare gravi distruzioni e alte perdite di vite umane attraverso una serie di agenti distruttivi, il principale dei quali è il movimento violento del terreno - che può avvenire con accelerazioni che possono essere semplificate in orizzontali e verticali[4] - con conseguente sollecitazione delle strutture edilizie in posa (edifici, ponti, ecc.), accompagnato eventualmente anche da altri effetti secondari quali inondazioni (ad esempio cedimento di dighe), cedimenti del terreno (frane, smottamenti o liquefazione), incendi o fuoriuscite di materiali pericolosi; se il sisma avviene sotto la superficie oceanica o marina o nei pressi della linea costiera può generare maremoti[5]. In ogni terremoto uno o più di questi agenti possono dunque concorrere a causare ulteriori gravi danni e vittime. Gli effetti di un terremoto possono essere esaltati e presentarsi in maniera variabile anche nell'ambito di piccole distanze a causa di fenomeni di amplificazione del moto sismico, dovuti alle condizioni geologiche locali, che vanno sotto il nome di risposta sismica locale o effetti di sito.

I terremoti più forti, come quello del Giappone dell'11 marzo 2011 (terremoto del Tōhoku del 2011), possono anche spostare di alcuni centimetri il polo nord geografico (questo ad esempio l'ha spostato di circa 10 cm) a causa dell'elasticità della crosta terrestre. A livello locale gli effetti di un sisma possono variare anche sensibilmente in conseguenza dei cosiddetti effetti di sito.

Il singolo evento che ha fatto registrare più vittime negli ultimi mille anni è il terremoto dello Shaanxi (Cina) del 1556, di magnitudo 8,3, a causa del quale morirono 830 000 persone[6][7]. Quello a più alta magnitudo, invece, è il terremoto di Valdivia (Cile) del 1960, che raggiunse magnitudo 9,5.

I terremoti più forti degli ultimi due secoli

Lo stesso argomento in dettaglio: Lista di terremoti.

I terremoti più forti del XX e XXI secolo

Classifica in base alla magnitudo. Secondo quanto riportato sul sito USGS[8] sono i seguenti.

  1. Valdivia, Cile - magnitudo 9,5 - 22 maggio 1960
  2. Stretto di Prince William, Alaska - magnitudo 9,2 - 28 marzo 1964
  3. Sumatra, Indonesia - magnitudo 9,1 - 26 dicembre 2004
  4. Tōhoku, Giappone - magnitudo 9,0 - 11 marzo 2011
  5. Kamčatka, Russia - magnitudo 9,0 - 4 novembre 1952
  6. Al largo della costa dell'Ecuador - magnitudo 8,8 - 31 gennaio 1906
  7. Concepción, Cile - magnitudo 8,8 - 27 febbraio 2010
  8. Isole Rat, Alaska - magnitudo 8,7 - 4 febbraio 1965
  9. Sumatra, Indonesia - magnitudo 8,7 - 28 marzo 2005
  10. Sumatra, Indonesia - magnitudo 8,6 - 11 aprile 2012
  11. Haiyuan, Cina - magnitudo 8,6 - 16 dicembre 1920
  12. Assam, Tibet - magnitudo 8,6 - 15 agosto 1950
  13. Isole Andreanof, Alaska - magnitudo 8,6 - 9 marzo 1957
  14. Regione di Atacama, Cile - magnitudo 8,5 - 11 novembre 1922
  15. Penisola di Kamčatka, Russia - magnitudo 8,5 - 3 febbraio 1923
  16. Mare di Banda, Indonesia - magnitudo 8,5 - 1º febbraio 1938
  17. Isole Curili, Russia - magnitudo 8,5 - 13 ottobre 1963
  18. Sumatra, Indonesia - magnitudo 8,5 - 12 settembre 2007
  19. Arequipa, Camaná, Perù - magnitudo 8,4 - 23 giugno 2001
  20. Regione di Coquimbo, Cile - magnitudo 8,3 - 17 settembre 2015
  21. Città del Messico, Messico - magnitudo 8,3 - 19 settembre 1985
  22. Città del Messico, Messico - magnitudo 8,2 - 8 settembre 2017
  23. Iquique, Cile - magnitudo 8,2 - 1º aprile 2014
  24. Ica, Perù - magnitudo 8,0 - 15 agosto 2007
  25. Regione di Loreto, Perù - magnitudo 8,0 - 26 maggio 2019
  26. Gaziantep, Turchia - magnitudo 7,8 - 7 febbraio 2023
La distribuzione del momento sismico nei terremoti del XX e XXI secolo. Si noti la percentuale di momento complessivo, espressa dai primi tre terremoti rispetto al totale.

I terremoti più disastrosi del XX e XXI secolo

Classifica in base al numero di morti dichiarati[9] (i numeri sono da considerarsi sempre approssimativi e quasi sempre sottostimati).

  1. Port-au-Prince, Haiti (2010) - 316 000 morti
  2. Tangshan, Cina (1976) - 255 000 morti
  3. Sumatra settentrionale, Indonesia (2004) - 230 000 morti
  4. Haiyuan, Cina (1920) - 200 000 morti (dal punto di vista degli effetti, questo terremoto è stato classificato al massimo grado della scala Mercalli, il dodicesimo)
  5. Qinghai, Cina (1927) - 200 000 morti
  6. Kanto, Giappone (1923) - 143 000 morti
  7. Messina e Reggio Calabria, Italia (1908) - 120 000 morti
  8. Ashgabat, Turkmenistan (1948) - 110 000 morti
  9. Sichuan orientale, Cina (2008) - 88 000 morti
  10. Muzzarrafad, Pakistan e India (2005) - 86 000 morti
  11. Gansu, Cina (1932) - 70 000 morti
  12. Chimbote, Perù (1970) - 70 000 morti
  13. Iran occidentale (1990) - 45 000 morti
  14. Gulang, Cina (1927) - 41 000 morti
  15. Avezzano, Italia (1915) - 33 000 morti
  16. Erzincan, Turchia (1939) - 33 000 morti
  17. Bam, Iran (2003) - 31 000 morti
  18. Quetta, Pakistan (1935) - 30 000 morti
  19. Chillán, Cile (1939) - 28 000 morti
  20. Sendai, Giappone (2011) - 27 000 morti (non confermati)
  21. Spitak, Armenia (1988) - 25 000 morti
  22. Guatemala (1976) - 23 000 morti
  23. Cina (1974) - 20 000 morti
  24. Gujarat, India (2001) - 20 000 morti
  25. Kangra, India (1905) - 19 000 morti
  26. Karamursel/Golyaka, Turchia (1999) - 17 000 morti
  27. India, (1993) - 16 000 morti
  28. Agadir, Marocco (1960) - 15 000 morti
  29. Tabas, Iran (1978) - 15 000 morti
  30. Qazvin, Iran (1962) - 12 500 morti
  31. Qaratog, Tagikistan (1907) - 12 000 morti
  32. Khait, Tajikistan (1949) - 12 000 morti
  33. Bihar, India-Nepal (1934) - 11 000 morti
  34. Fuyun, Xinjiang (Sinkiang), Cina (1931) - 10 000 morti
  35. Dasht-e Bayaz, Iran (1968) - 10 000 morti
  36. Tonghai, Yunnan, Cina (1970) - 10 000 morti

Terremoti più forti per paese

Prevedibilità

Lo stesso argomento in dettaglio: Pericolo sismico, Rischio sismico e Precursori sismici.
Esempio di mappa di pericolo sismico

Alcuni terremoti, specialmente i più forti, sono anche accompagnati, preceduti o seguiti da fenomeni naturali insoliti detti precursori sismici come: lampi o bagliori (luci telluriche); variazioni improvvise del campo magnetico, elettrico o della radioattività locale (emissione di radon); interferenze nelle comunicazioni radio; nervosismo degli animali; variazione del livello delle falde o delle acque costiere; attività vulcanica. Tutte queste manifestazioni hanno trovato riscontro nelle osservazioni e nelle testimonianze e sono state studiate e in parte confermate dalla ricerca scientifica che è giunta alla spiegazione di ognuna di esse, anche se, in mancanza di consenso unanime, non costituiscono di fatto misure effettivamente riconosciute e adottate sul fronte della previsione.

Il terremoto di Haicheng del 4 febbraio 1975 è stato storicamente il primo e unico terremoto previsto con tali tecniche[10], ma in quel caso i precursori sismici di natura geologica furono talmente intensi e regolarmente progressivi da non lasciare alcun dubbio sulla prossimità e imminenza dell'evento.

Già dall'Ottocento sono state inoltre studiate le correlazioni tra le variazioni dell'altezza della falda idrica e della gravità locale, oltre che dell'emissione di radon, ma purtroppo allo stato attuale delle conoscenze non sono ancora stati elaborati modelli che permettano di evidenziare segnali utili alla previsione efficace di un terremoto o delle sue possibili caratteristiche, intensità e localizzazione spaziotemporale.

Mappa del rischio sismico in Nord Europa

In particolare il radon si forma dal decadimento radioattivo del radio ed essendo un gas nobile non si combina con gli altri elementi e composti chimici; pertanto gran parte del radon che si forma all'interno delle rocce rimane intrappolato in esse. Se improvvisamente si verificano movimenti, fessurazioni, compressioni e distensioni di rocce, come avviene durante o immediatamente prima di un terremoto, il radon contenuto in profondità affiora sulla superficie terrestre, dove peraltro è già presente in una certa concentrazione, aumentando la concentrazione locale con picchi improvvisi o i cosiddetti "spifferi"[11]. Nella speranza di poter realizzare un sistema di previsione a breve termine e affidabile dei terremoti, vari studi sono in corso; per tale ricerca si utilizza una rete di rivelatori di radon, opportunamente distribuiti sulla superficie delle zone interessate.

La prevedibilità dei fenomeni sismici è stata oggetto in Italia di discussioni e polemiche fuori dell'ambito scientifico, a seguito del terremoto dell'Aquila del 6 aprile 2009; in occasione del tragico evento, la stampa riportò con enfasi la notizia secondo la quale Giampaolo Giuliani (un tecnico di laboratorio dell'INAF, non laureato, che, durante il tempo libero, svolge studi sui terremoti a titolo personale), nelle settimane precedenti il sisma, avrebbe sostenuto varie ipotesi sull'imminenza di una scossa disastrosa, procurando anche alcuni falsi allarmi[12]; il verificarsi di un evento sismico sarebbe stato predetto, a suo dire, in marzo, a grandi linee in quella stessa regione; affermava di basare la sua analisi sull'aumento improvviso di emissioni di radon[13], utilizzando però strumentazioni e metodi previsionali che non sono stati ritenuti rigorosamente validi dalla comunità scientifica.

Sullo studio dei precursori sismici di origine elettromagnetica, osservati per la prima volta nel 1880[14], si sta attivamente impegnando l'Associazione Radioamatori Italiana (ARI) e altri gruppi di ricerca privati, predisponendo stazioni di ascolto delle emissioni elettromagnetiche in bassa frequenza ELF (Extremely Low Frequency)[15][16][17][18].

Anche il monitoraggio dell'eventuale sciame sismico prima di un mainshock spesso non sembra portare a risultati concreti in termini di previsione in quanto la stragrande maggioranza degli sciami sismici evolvono senza produrre catastrofi ovvero dissipandosi più o meno lentamente nel tempo secondo la legge di Omori[19].

Attualmente alcuni modelli fisici sperimentali di previsione sismica di natura statistica si sono rivelati abbastanza efficaci nel prevedere alcune sequenze di aftershock, ma abbastanza deludenti nel prevedere il main shock[20].

Allo stadio attuale della ricerca sismologica i risultati più concreti per la previsione dei terremoti si hanno dunque per via statistica nel lungo periodo ovvero consultando mappe di pericolosità che tengono conto dei tempi di ritorno di un sisma in un dato territorio, cioè calcolandone la probabilità di occorrenza. Tuttavia l'intervallo di tempo in cui si ritiene probabile il verificarsi di un sisma è piuttosto esteso, anche decine di anni, rendendo vano ogni tentativo ragionevole di prevenzione che renda efficace l'evacuazione delle popolazioni[21].

Prevenzione

Lo stesso argomento in dettaglio: Ingegneria sismica e Adeguamento sismico.
Isolatore sismico

La ricerca scientifica è ancora lontana dalla previsione di un sisma: il rimedio più praticabile e saggio contro i danni materiali e umani dei terremoti è rappresentato dalla protezione attiva, ovvero dall'uso di efficaci tecniche antisismiche di costruzione di edifici proprie dell'ingegneria sismica come ad esempio l'isolamento sismico: queste tecniche allo stadio attuale sono in grado di minimizzare i danni anche di terremoti estremamente potenti e sono diffusamente utilizzate in alcune delle aree più sismiche al mondo come il Giappone.

Per individuare zone a significativo pericolo sismico e a conseguente rischio sismico si fa usualmente ricorso a studi di sismologia storica, paleosismologia e a tecniche di microzonazione sismica fornendo relative mappe di rischio, mentre per valutare gli effetti di un sisma si può ricorrere a tecniche di simulazione (vedi simulazione di terremoto).

Gestione con GDACS

Nel 2004, l'Ufficio delle Nazioni Unite per il coordinamento degli affari umanitari (OCHA) e la Commissione europea hanno istituito il Global Disaster Alert and Coordination System ("Sistema di Allerta e Coordinamento Globale dei Disastri", GDACS), per migliorare e accrescere l'efficacia della macchina dei soccorsi e dei piani di aiuto umanitario.[22] Nato col nome di GDAS, ha inizialmente trovato impiego per sostituire con un'unica piattaforma informatica multi-evento i diversi sistemi di monitoraggio e di allerta esistenti, relativamente a terremoti, tsunami, inondazioni, eruzioni vulcaniche e cicloni tropicali.

In un secondo passo di implementazione del progetto, il sistema di monitoraggio è stato integrato con quello di gestione delle emergenze e di coordinamento degli interventi, noto come OCHA Virtual OSOCC. Ciò ha permesso di raccogliere informazioni sui rischi e pericoli concreti e attuali quasi in tempo reale, comunicando tempestivamente le notizie agli operatori coinvolti negli interventi e alla popolazione civile, secondo una modalità multicanale (dal tradizionale telefono, all'e-mail, agli SMS, al sito Web).[23]
Il sistema GDACS, così ottenuto, è divenuto in grado di valutare le informazioni meteorologiche con i dati economici e socio-demografici delle zone prevedibilmente interessate, in modo tale da eseguire un'analisi non in termini esclusivi di probabilità dell'evento, ma anche di magnitudo dell'impatto per la popolazione e per altre realtà presenti nel territorio circostante.

Studi e credenze

  • Nell'antica Grecia, Poseidone era considerato il dio dei terremoti, oltre che del mare. Il suo corrispondente romano era Nettuno.
  • Tra i Romani si credeva che i terremoti fossero causati dall'energia dei venti che si accumulava nelle caverne, o dal flusso e riflusso delle acque nelle cavità della Terra.[24]
  • Nel 1626 il gesuita italiano Niccolò Longobardi diede un rilevante contributo alla spiegazione scientifica dei fenomeni sismici con il suo Trattato sui terremoti, opera scritta in cinese.
  • Il giovane Immanuel Kant, appena trentunenne, quando viene a sapere del terremoto di Lisbona del 1º novembre 1755 pubblica il 24 gennaio del 1756 il primo dei suoi Scritti sui terremoti dove cercherà di dare una veste scientifica alle sue riflessioni che nel corso delle sue opere estenderà anche a considerazioni morali.
  • Durante la guerra fredda, le onde P sono state studiate per tenere sotto controllo i Paesi che praticavano esperimenti nucleari. Ognuno dei due blocchi studiava i progressi nucleari del blocco contrapposto, grazie all'utilizzo dei sismometri, al punto che i test nucleari (sotterranei o in atmosfera) furono usati sia dagli USA sia dall'URSS come una sorta di avvertimento — o comunicazione indiretta — nei confronti del nemico.
  • La Chiesa cattolica venera Sant'Emidio come protettore dal terremoto.

Note

  1. ^ L'allarme: possibili nuove scosse, su liberoquotidiano.it. URL consultato il 24 maggio 2020 (archiviato dall'url originale il 4 marzo 2016).
  2. ^ Un condotto vulcanico durante le fasi di quiescenza non è aperto, in parte perché intasato da lava solidificata e in parte perché collassa rapidamente una volta che viene meno la pressione del magma alla fine di una fase eruttiva, ma esiste come zona di debolezza (una zona intensamente fratturata) nelle rocce crostali dalla quale si può manifestare eventualmente attività fumarolica. Quando sopravviene una nuova fase eruttiva, il magma si fa strada allargando le fratture crostali esistenti lungo questa linea di debolezza.
  3. ^ Statis C. Stiros, Archeological evidences of antiseismic constructions in antiquity, Annali di geofisica, Vol XXXVIII, n. 5-6, nov-dic 1995
  4. ^ Sisma verticale: amplificazione della vulnerabilità degli edifici esistenti in muratura, su www.ingenio-web.it. URL consultato il 13 dicembre 2018 (archiviato il 28 febbraio 2020).
  5. ^ In lingua giapponese tsunami
  6. ^ I maggiori terremoti nel mondo a partire dall'anno 1000 d.C., su markrage.it. URL consultato il 16 ottobre 2015 (archiviato dall'url originale il 29 ottobre 2013).
  7. ^ International Association of Engineering Geology International Congress. Proceedings. (1990). ISBN 90-6191-664-X.
  8. ^ (EN) 10_largest_world Archiviato il 7 novembre 2010 in Internet Archive. earthquake.usgs.gov
  9. ^ (EN) world_deaths Archiviato l'11 ottobre 2008 in Internet Archive. earthquake.usgs.gov
  10. ^ Tedesco, G. (2005). Introduzione allo studio dei terremoti. 144.
  11. ^ Richon, P.; Sabroux, J.-C.; Halbwachs, M.; Vandemeulebrouck, J.; Poussielgue, N.; Tabbagh, J.; Punongbayan, R., Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994), in Geophysical Research Letters, vol. 30, n. 9, 2003, pp. 34–41, DOI:10.1029/2003GL016902.
  12. ^ [Vari articoli su quotidiani, tra cui il Giornale, 8 aprile 2009]
  13. ^ Sisma Abruzzo/ Giuliani: mi sento responsabile per i morti
  14. ^ John Milne, (1890) Earthquakes in connection with electric and magnetic phenomena, Trans. Seismol. Soc. Jpn.
  15. ^ ARI Fidenza, su arifidenza.it. URL consultato il 3 dicembre 2009 (archiviato il 24 marzo 2009).
  16. ^ F.E.S.N, su fesn.org. URL consultato il 24 maggio 2020 (archiviato il 20 ottobre 2019).
  17. ^ Precursori Sismici Elettromagnetici, su precursori.org. URL consultato il 9 maggio 2019 (archiviato dall'url originale il 20 febbraio 2017).
  18. ^ Radio Emissions Project (ELF - SLF - ULF - VLF) - LTPA Observer Project | © 2008-2015, su ltpaobserverproject.com. URL consultato il 24 maggio 2020 (archiviato il 27 marzo 2019).
  19. ^ Omori F., 1894, On the aftershocks of earthquakes, Journal of the College of Science, Imperial University of Tokyo, vol. 7, pag. 111–200.
  20. ^ Copia archiviata (PDF), su protezionecivile.it. URL consultato il 2 aprile 2011 (archiviato dall'url originale il 19 maggio 2011).
  21. ^ SISMOLAB - Terremoto dell'Aquila: La verità sulla previsione dei terremoti dopo le polemiche tra INGV, Protezione Civile da una parte e sismologi esterni dall'altra Archiviato il 2 giugno 2012 in Internet Archive.
  22. ^ (EN) Informazioni riguardo al GDACS, su portal.gdacs.org. URL consultato il 24 settembre 2019 (archiviato dall'url originale il 2 giugno 2018).
  23. ^ T. De Groeve, Peter, T., Annunziato, A. e Vernaccini, L., Global Disaster Alert and Coordination System, 2009.
  24. ^ Aulo Gellio, Noctes Atticae, II, 28 Archiviato il 19 novembre 2018 in Internet Archive.

Bibliografia

  • Henrik Svensen, Storia dei disastri naturali, Odoya, Bologna 2010, 320 pp., ISBN 978-88-6288-064-0

Voci correlate

Le singole voci sono elencate nella Categoria:Terremoti.

Altri progetti

Altri progetti

  • Wikiquote
  • Wikizionario
  • Wikinotizie
  • Wikimedia Commons
  • Wikivoyage
  • Collabora a Wikiquote Wikiquote contiene citazioni sul terremoto
  • Collabora a Wikizionario Wikizionario contiene il lemma di dizionario «terremoto»
  • Collabora a Wikinotizie Wikinotizie contiene notizie di attualità sul terremoto
  • Collabora a Wikimedia Commons Wikimedia Commons contiene immagini o altri file sul terremoto
  • Collabora a Wikivoyage Wikivoyage contiene informazioni turistiche sul terremoto

Collegamenti esterni

  • terremoto, su Treccani.it – Enciclopedie on line, Istituto dell'Enciclopedia Italiana. Modifica su Wikidata
  • Giovanni Battista Alfano, TERREMOTO, in Enciclopedia Italiana, Istituto dell'Enciclopedia Italiana, 1937. Modifica su Wikidata
  • Giancarlo Scalera, Terremoto, in Enciclopedia Italiana, VI Appendice, Istituto dell'Enciclopedia Italiana, 2000. Modifica su Wikidata
  • terremoto, in Dizionario delle scienze fisiche, Istituto dell'Enciclopedia Italiana, 1996. Modifica su Wikidata
  • terremòto, su Vocabolario Treccani, Istituto dell'Enciclopedia Italiana. Modifica su Wikidata
  • terremòto, su sapere.it, De Agostini. Modifica su Wikidata
  • Giuliana Mele, terremoto, in Enciclopedia dei ragazzi, Istituto dell'Enciclopedia Italiana, 2004-2006. Modifica su Wikidata
  • (EN) Bruce A. Bolt, earthquake, su Enciclopedia Britannica, Encyclopædia Britannica, Inc. Modifica su Wikidata
  • (EN) Opere riguardanti Earthquakes, su Open Library, Internet Archive. Modifica su Wikidata
  • Istituto Nazionale di Geofisica e Vulcanologia, su ingv.it.
  • Hai sentito il terremoto?, progetto di citizen science di INGV
  • Directory dei terremoti a partire dal 2010, su earthquake-report.com. URL consultato il 6 giugno 2012 (archiviato dall'url originale il 21 aprile 2013).
  • Mappatura dei terremoti ne mondo in tempo reale, su 3bmeteo.com, Global Disaster Alert and Coordination System.
  • USGS Earthquake Hazard Program, su earthquake.usgs.gov.
  • Bollettino Sismico Italiano - ISIDE (Italian Seismological Instrumental and parametric Data-basE)
  • Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System - Sistema informatico per l'allerta precoce - G. Zazzaro, F.M. Pisano, G. Romano
  • European-Mediterranean Seismological Centre Centro Sismologico Euro-Mediterraneo
  • Visualizzare i terremoti in Google Earth, su gnss-info.blogspot.com.
  • USGS Earthquake USGS Earthquake Hazards Program
  • CFTI4Med Archiviato il 22 luglio 2011 in Internet Archive. Catalogue of Strong Earthquakes in Italy (461 B.C.-1997) and Mediterranean Area (760 B.C.-1500). Emanuela Guidoboni, Graziano Ferrari, Dante Mariotti, Alberto Comastri, Gabriele Tarabusi and Gianluca Valensise 2007 (INGV - SGA)
  • DBMI11[collegamento interrotto]: il database INGV delle osservazioni macrosismiche dei terremoti italiani dal 1000 al 2006
  • SeismoCloud, su seismocloud.com (archiviato dall'url originale il 26 agosto 2016; seconda copia archiviata il 10 agosto 2016). Progetto italiano di ricerca per l'identificazione istantanea dei terremoti (tramite crowdsourcing) e invio di Early Warning
Controllo di autoritàThesaurus BNCF 12940 · LCCN (EN) sh85040496 · GND (DE) 4015134-7 · BNF (FR) cb11933194n (data) · J9U (ENHE) 987007567864105171 · NDL (ENJA) 00574860
  Portale Catastrofi
  Portale Scienze della Terra