PMNS-матрица

Ароматы в физике элементарных частиц
Ароматы
Чётность
Квантовые числа
Заряды
Комбинации
См. также

PMNS-матрица (матрица Понтекорво — Маки — Накагавы — Сакаты) — унитарная матрица смешивания нейтрино в физике элементарных частиц, аналогичная CKM-матрице смешивания кварков, получила своё название в честь Б. М. Понтекорво, в 1957 году впервые рассмотревшего смешивание нейтрино, и З. Маки, М. Накагавы и С. Сакаты, сделавших это в 1962 году.[1][2][3][4]

Эта матрица содержит в себе информацию, насколько отличаются собственные квантовые состояния нейтрино относительно лагранжианов свободного распространения (см. лагранжиан Дирака) и слабого взаимодействия. Недиагональные матричные элементы описывают осцилляции нейтрино, то есть переходы между разными состояниями.

Матрица

Для трёх поколений лептонов матрица записывается в следующем виде:

[ ν e ν μ ν τ ] = [ U e 1 U e 2 U e 3 U μ 1 U μ 2 U μ 3 U τ 1 U τ 2 U τ 3 ] [ ν 1 ν 2 ν 3 ]   , {\displaystyle {\begin{bmatrix}{\nu _{e}}\\{\nu _{\mu }}\\{\nu _{\tau }}\end{bmatrix}}={\begin{bmatrix}U_{e1}&U_{e2}&U_{e3}\\U_{\mu 1}&U_{\mu 2}&U_{\mu 3}\\U_{\tau 1}&U_{\tau 2}&U_{\tau 3}\end{bmatrix}}{\begin{bmatrix}\nu _{1}\\\nu _{2}\\\nu _{3}\end{bmatrix}}\ ,}

где слева приведены поля нейтрино, участвующие в слабом взаимодействии, а справа — PMNS-матрица, умноженная на вектор полей нейтрино после диагонализации массовой матрицы нейтрино. PMNS-матрица содержит амплитуду вероятности перехода данного аромата α в массовое собственное состояние i. Эти вероятности пропорциональны |Uαi.

Как правило, используется следующая параметризация матрицы[5]:

U = [ 1 0 0 0 c 23 s 23 0 s 23 c 23 ] [ c 13 0 s 13 e i δ 0 1 0 s 13 e i δ 0 c 13 ] [ c 12 s 12 0 s 12 c 12 0 0 0 1 ] [ e i α 1 / 2 0 0 0 e i α 2 / 2 0 0 0 1 ] = [ c 12 c 13 s 12 c 13 s 13 e i δ s 12 c 23 c 12 s 23 s 13 e i δ c 12 c 23 s 12 s 23 s 13 e i δ s 23 c 13 s 12 s 23 c 12 c 23 s 13 e i δ c 12 s 23 s 12 c 23 s 13 e i δ c 23 c 13 ] [ e i α 1 / 2 0 0 0 e i α 2 / 2 0 0 0 1 ] , {\displaystyle {\begin{aligned}U&={\begin{bmatrix}1&0&0\\0&c_{23}&s_{23}\\0&-s_{23}&c_{23}\end{bmatrix}}{\begin{bmatrix}c_{13}&0&s_{13}e^{-i\delta }\\0&1&0\\-s_{13}e^{i\delta }&0&c_{13}\end{bmatrix}}{\begin{bmatrix}c_{12}&s_{12}&0\\-s_{12}&c_{12}&0\\0&0&1\end{bmatrix}}{\begin{bmatrix}e^{i\alpha _{1}/2}&0&0\\0&e^{i\alpha _{2}/2}&0\\0&0&1\end{bmatrix}}\\&={\begin{bmatrix}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta }\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta }&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta }&s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta }&-c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta }&c_{23}c_{13}\end{bmatrix}}{\begin{bmatrix}e^{i\alpha _{1}/2}&0&0\\0&e^{i\alpha _{2}/2}&0\\0&0&1\end{bmatrix}},\\\end{aligned}}}

где cij = cos θij и sij = sin θij. Три угла смешивания θ12, θ13 и θ23 лежат в диапазоне от 0 до π/2 и описывают смешивание между тремя массовыми компонентами нейтрино.

Из-за трудностей детектирования нейтрино определение значения коэффициентов значительно сложнее, чем аналогичной матрицы смешивания кварков (CKM-матрица). В 2012 году сообщались следующие значения коэффициентов:[6]

sin 2 ( 2 θ 12 ) = 0.857 ± 0.024 {\displaystyle \sin ^{2}(2\theta _{12})=0.857\pm 0.024}
sin 2 ( 2 θ 23 ) > 0.95 {\displaystyle \sin ^{2}(2\theta _{23})>0.95} в доверительном интервале 90 %
sin 2 ( 2 θ 13 ) = 0.098 ± 0.013 {\displaystyle \sin ^{2}(2\theta _{13})=0.098\pm 0.013}

CP-нарушающие фазы

Множитель δ — так называемая СР-нарушающая фаза Дирака, она вводится в рассмотрение в случае, если нейтрино являются дираковскими частицами. Если δ отлична от 0 или π, смешивание нейтрино будет происходить с нарушением СР-инвариантности. Таким образом, введение δ отражает один из возможных механизмов СР-нарушения в лептонном секторе. В общем случае смешивания между n активными и n массовыми состояниями нейтрино, матрица смешивания (размера n X n) будет содержать (n-1)(n-2)/2 независимых дираковских фаз.

Множители αi — это СР-нарушающие фазы Майораны, они вводятся в рассмотрение в случае, если нейтрино являются майорановскими частицами. Майорановские фазы сохраняют СР-чётность, если αi=π qi, qi=0,1,2. В этом случае уравнение e i ( α j α k ) {\displaystyle e^{i(\alpha _{j}-\alpha _{k})}} = ±1 имеет простой физический смысл: это относительная СР-чётность майорановских нейтрино ν j {\displaystyle \nu _{j}} и ν k {\displaystyle \nu _{k}} . В общем случае смешивания между n активными и n массовыми состояниями нейтрино имеется n-1 независимых майорановских фаз. Майорановские фазы могут быть обнаружены, например, при изучении скорости двойного безнейтринного бета-распада, который может происходить с участием майорановских нейтрино. В настоящее время неизвестно, являются ли нейтрино истинно дираковскими, истинно майорановскими или суперпозицией дираковских и майорановских состояний.

Другие параметризации

Наряду со стандартной 3-ароматовой схемой смешивания изучаются также другие варианты, например, схемы с добавлением одного или более стерильного нейтрино. Вместо PMNS-матрицы будем иметь в этом случае унитарную 4×4 матрицу смешивания, которая может быть параметризована как произведение 6 матриц поворота (6 эйлеровских углов) и (в общем случае) 3 дираковских и 5 майорановских фаз.

Существуют также другие параметризации этой матрицы[7].

Примечания

  1. Б. М. Понтекорво. Мезоний и антимезоний (англ.) // ЖЭТФ : journal. — 1957. — Vol. 33. — P. 549—551.
  2. Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the Unified Model of Elementary Particles (англ.) // Progress of Theoretical Physics[англ.] : journal. — 1962. — Vol. 28. — P. 870. — doi:10.1143/PTP.28.870.
  3. Б. М. Понтекорво. Нейтринные эксперименты и вопрос о сохранении лептонного заряда (рус.) // ЖЭТФ : журнал. — 1967. — Т. 53, № 5. — С. 1717—1725.
  4. V.N. Gribov, B. Pontecorvo. Neutrino astronomy and lepton charge (англ.) // Physics Letters[англ.] : journal. — 1969. — Vol. B28. — P. 493. — doi:10.1016/0370-2693(69)90525-5.
  5. K. Nakamura, S. T. Petkov. Particle Data Group - The Review of Particle Physics (англ.) // J. Phys. G[англ.] : journal. — 2004. — Vol. 37. — P. 075021. Архивировано 16 июня 2018 года. Chapter 15: Neutrino mass, mixing, and oscillations Архивная копия от 8 июля 2011 на Wayback Machine. May 2010.
  6. Источник  (неопр.). Дата обращения: 25 января 2013. Архивировано 12 мая 2013 года.
  7. J. W. F. Valle (2006). "Neutrino physics overview". arXiv:hep-ph/0608101. {{cite arXiv}}: |class= игнорируется (справка)

См. также

Ссылки

  • М. И. Высоцкий, Лекции по теории электрослабых взаимодействий, Препринт ИТЭФ, 2009. (недоступная ссылка)
  • С. С. Герштейн, Е. П. Кузнецов, В. А. Рябов, Природа массы нейтрино и нейтринные осцилляции, УФН, т. 167, стр. 811, 1997.
  • Г. В. Клапдор-Клайнгротхаус, А. Штаудт Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.
  • Particle Data Group, Summary Tables