Lista över bestämda integraler

Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-04)
Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan.

Inom matematiken är den bestämda integralen

a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx}

arean i xy-planet mellan grafen av f, x-axeln och linjerna x = a och x = b, så att arean ovanför x-axeln räknas som positiv och arean under x-axeln som negativ.

Bestämda integraler av rationella och irrationella funktioner

0 d x x 2 + a 2 = π 2 a {\displaystyle \int _{0}^{\infty }{\frac {dx}{x^{2}+a^{2}}}={\frac {\pi }{2a}}}
0 a x m d x x n + a n = π a m n + 1 n sin [ ( m + 1 ) π / n ) ] {\displaystyle \int _{0}^{a}{\frac {x^{m}dx}{x^{n}+a^{n}}}={\frac {\pi a^{m-n+1}}{n\sin[(m+1)\pi /n)]}}}
0 x p 1 d x 1 + x = π sin p π     , 0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {x^{p-1}dx}{1+x}}={\frac {\pi }{\sin p\pi }}\ \ ,0<p<1}
0 x m d x 1 + 2 x cos β + x 2 = π sin ( m π ) sin ( m β ) sin β {\displaystyle \int _{0}^{\infty }{\frac {x^{m}dx}{1+2x\cos \beta +x^{2}}}={\frac {\pi }{\sin(m\pi )}}{\frac {\sin(m\beta )}{\sin \beta }}}
0 d x a 2 x 2 = π 2 {\displaystyle \int _{0}^{\infty }{\frac {dx}{\sqrt {a^{2}-x^{2}}}}={\frac {\pi }{2}}}
0 a a 2 x 2 d x = π a 2 4 {\displaystyle \int _{0}^{a}{\sqrt {a^{2}-x^{2}}}\,dx={\frac {\pi a^{2}}{4}}}
0 a x m ( a n x n ) p d x = a m + 1 + n p Γ [ ( m + 1 ) / n ] Γ ( p + 1 ) n Γ [ ( ( m + 1 ) / n ) + p + 1 ] {\displaystyle \int _{0}^{a}x^{m}(a^{n}-x^{n})^{p}\,dx={\frac {a^{m+1+np}\Gamma [(m+1)/n]\Gamma (p+1)}{n\Gamma [((m+1)/n)+p+1]}}}
0 x m d x ( x n + a n ) r = ( 1 ) r 1 π a m + 1 n r Γ [ ( m + 1 ) / n ] n sin [ ( m + 1 ) π / n ] ( r 1 ) ! Γ [ ( m + 1 ) / n r + 1 ]     , n ( r 2 ) < m + 1 < n r {\displaystyle \int _{0}^{\infty }{\frac {x^{m}\,dx}{({x^{n}+a^{n})}^{r}}}={\frac {(-1)^{r-1}\pi a^{m+1-nr}\Gamma [(m+1)/n]}{n\sin[(m+1)\pi /n](r-1)!\Gamma [(m+1)/n-r+1]}}\ \ ,n(r-2)<m+1<nr}
0 1 1 1 t 3 d t = 1 3 B ( 1 3 , 1 2 ) {\displaystyle \int _{0}^{1}{\frac {1}{\sqrt {1-t^{3}}}}\,dt={\frac {1}{3}}\mathrm {B} \left({\frac {1}{3}},{\frac {1}{2}}\right)}

Bestämda integraler som innehåller trigonometriska funktioner

0 π sin m x sin n x d x = { 0 om  m n π / 2 om  m = n     m , n  är heltal {\displaystyle \int _{0}^{\pi }\sin mx\sin nx\,dx={\begin{cases}0&{\text{om }}m\neq n\\\pi /2&{\text{om }}m=n\end{cases}}\ \ m,n{\text{ är heltal}}}
0 π cos m x cos n x d x = { 0 om  m n π / 2 om  m = n     m , n  är heltal  {\displaystyle \int _{0}^{\pi }\cos mx\cos nxdx={\begin{cases}0&{\text{om }}m\neq n\\\pi /2&{\text{om }}m=n\end{cases}}\ \ m,n{\text{ är heltal }}}
0 π sin m x cos n x d x = { 0 om  m + n  är jämnt 2 m m 2 n 2 om  m + n  är udda     m , n  är heltal . {\displaystyle \int _{0}^{\pi }\sin mx\cos nx\,dx={\begin{cases}0&{\text{om }}m+n{\text{ är jämnt}}\\{\frac {2m}{m^{2}-n^{2}}}&{\text{om }}m+n{\text{ är udda}}\end{cases}}\ \ m,n{\text{ är heltal}}.}
0 π / 2 sin 2 x d x = 0 π / 2 cos 2 x d x = π / 4 {\displaystyle \int _{0}^{\pi /2}\sin ^{2}x\,dx=\int _{0}^{\pi /2}\cos ^{2}x\,dx=\pi /4}
0 π / 2 sin 2 m x d x = 0 π / 2 cos 2 m x d x = 1 × 3 × 5 × × ( 2 m 1 ) 2 × 4 × 6 × × 2 m π 2     m = 1 , 2 , 3 , {\displaystyle \int _{0}^{\pi /2}\sin ^{2m}x\,dx=\int _{0}^{\pi /2}\cos ^{2m}x\,dx={\frac {1\times 3\times 5\times \cdots \times (2m-1)}{2\times 4\times 6\times \cdots \times 2m}}{\frac {\pi }{2}}\ \ m=1,2,3,\ldots }
0 π / 2 sin 2 m + 1 x d x = 0 π / 2 cos 2 m + 1 x d x = 2 × 4 × 6 × × 2 m 1 × 3 × 5 × × ( 2 m + 1 )     m = 1 , 2 , 3 , {\displaystyle \int _{0}^{\pi /2}\sin ^{2m+1}x\,dx=\int _{0}^{\pi /2}\cos ^{2m+1}x\,dx={\frac {2\times 4\times 6\times \cdots \times 2m}{1\times 3\times 5\times \cdots \times (2m+1)}}\ \ m=1,2,3,\ldots }
0 π / 2 sin 2 p 1 x cos 2 q 1 x d x = Γ ( p ) Γ ( q ) 2 Γ ( p + q ) = 1 2 B ( p , q ) {\displaystyle \int _{0}^{\pi /2}\sin ^{2p-1}x\cos ^{2q-1}x\,dx={\frac {\Gamma (p)\Gamma (q)}{2\Gamma (p+q)}}={\frac {1}{2}}B(p,q)}
0 sin p x x d x = { π / 2 om  p > 0 0 om  p = 0 π / 2 om  p < 0 {\displaystyle \int _{0}^{\infty }{\frac {\sin px}{x}}\,dx={\begin{cases}\pi /2&{\text{om }}p>0\\0&{\text{om }}p=0\\-\pi /2&{\text{om }}p<0\end{cases}}}

0 sin p x cos q x x   d x = { 0  if  p > q > 0 π / 2  om  0 < p < q π / 4  om  p = q > 0 {\displaystyle \int _{0}^{\infty }{\frac {\sin px\cos qx}{x}}\ dx={\begin{cases}0&{\text{ if }}p>q>0\\\pi /2&{\text{ om }}0<p<q\\\pi /4&{\text{ om }}p=q>0\end{cases}}}

0 sin p x sin q x x 2   d x = { π p / 2  om  0 < p q π q / 2  om  0 < q p {\displaystyle \int _{0}^{\infty }{\frac {\sin px\sin qx}{x^{2}}}\ dx={\begin{cases}\pi p/2&{\text{ om }}0<p\leq q\\\pi q/2&{\text{ om }}0<q\leq p\end{cases}}}

0 sin 2 p x x 2   d x = π p 2 {\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}px}{x^{2}}}\ dx={\frac {\pi p}{2}}}

0 1 cos p x x 2   d x = π p 2 {\displaystyle \int _{0}^{\infty }{\frac {1-\cos px}{x^{2}}}\ dx={\frac {\pi p}{2}}}

0 cos p x cos q x x   d x = ln q p {\displaystyle \int _{0}^{\infty }{\frac {\cos px-\cos qx}{x}}\ dx=\ln {\frac {q}{p}}}

0 cos p x cos q x x 2   d x = π ( q p ) 2 {\displaystyle \int _{0}^{\infty }{\frac {\cos px-\cos qx}{x^{2}}}\ dx={\frac {\pi (q-p)}{2}}}

0 cos m x x 2 + a 2   d x = π 2 a e m a {\displaystyle \int _{0}^{\infty }{\frac {\cos mx}{x^{2}+a^{2}}}\ dx={\frac {\pi }{2a}}e^{-ma}}

0 x sin m x x 2 + a 2   d x = π 2 e m a {\displaystyle \int _{0}^{\infty }{\frac {x\sin mx}{x^{2}+a^{2}}}\ dx={\frac {\pi }{2}}e^{-ma}}
0 sin m x x ( x 2 + a 2 )   d x = π 2 a 2 ( 1 e m a ) {\displaystyle \int _{0}^{\infty }{\frac {\sin mx}{x(x^{2}+a^{2})}}\ dx={\frac {\pi }{2a^{2}}}(1-e^{-ma})}
0 2 π d x a + b sin x = 2 π a 2 b 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{a+b\sin x}}={\frac {2\pi }{\sqrt {a^{2}-b^{2}}}}}
0 2 π d x a + b cos x = 2 π a 2 b 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{a+b\cos x}}={\frac {2\pi }{\sqrt {a^{2}-b^{2}}}}}
0 π 2 d x a + b cos x = cos 1 ( b / a ) a 2 b 2 {\displaystyle \int _{0}^{\frac {\pi }{2}}{\frac {dx}{a+b\cos x}}={\frac {\cos ^{-1}(b/a)}{\sqrt {a^{2}-b^{2}}}}}
0 2 π d x ( a + b sin x ) 2 = 0 2 π d x ( a + b cos x ) 2 = 2 π a ( a 2 b 2 ) 3 / 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{(a+b\sin x)^{2}}}=\int _{0}^{2\pi }{\frac {dx}{(a+b\cos x)^{2}}}={\frac {2\pi a}{(a^{2}-b^{2})^{3/2}}}}
0 2 π d x 1 2 a cos x + a 2 = 2 π 1 a 2       ,   0 < a < 1 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{1-2a\cos x+a^{2}}}={\frac {2\pi }{1-a^{2}}}\ \ \ ,\ 0<a<1}
0 π x sin x   d x 1 2 a cos x + a 2 = { π a ln ( 1 + a ) om  | a | < 1 π ln ( 1 + 1 / a ) om  | a | > 1 {\displaystyle \int _{0}^{\pi }{\frac {x\sin x\ dx}{1-2a\cos x+a^{2}}}={\begin{cases}{\frac {\pi }{a}}\ln(1+a)&{\text{om }}|a|<1\\\pi \ln(1+1/a)&{\text{om }}|a|>1\end{cases}}}
0 π cos m x   d x 1 2 a cos x + a 2 = π a m 1 a 2 , a 2 < 1 ,   m = 0 , 1 , 2 , {\displaystyle \int _{0}^{\pi }{\frac {\cos mx\ dx}{1-2a\cos x+a^{2}}}={\frac {\pi a^{m}}{1-a^{2}}}\quad ,a^{2}<1,\ m=0,1,2,\dots }
0 sin a x 2   d x = 0 cos a x 2 = 1 2 π 2 a {\displaystyle \int _{0}^{\infty }\sin ax^{2}\ dx=\int _{0}^{\infty }\cos ax^{2}={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}}
0 sin a x n = 1 n a 1 / n Γ ( 1 / n ) sin π 2 n , n > 1 {\displaystyle \int _{0}^{\infty }\sin ax^{n}={\frac {1}{na^{1/n}}}\Gamma (1/n)\sin {\frac {\pi }{2n}}\quad ,n>1}
0 cos a x n = 1 n a 1 / n Γ ( 1 / n ) cos π 2 n , n > 1 {\displaystyle \int _{0}^{\infty }\cos ax^{n}={\frac {1}{na^{1/n}}}\Gamma (1/n)\cos {\frac {\pi }{2n}}\quad ,n>1}
0 sin x x   d x = 0 cos x x   d x = π 2 {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{\sqrt {x}}}\ dx=\int _{0}^{\infty }{\frac {\cos x}{\sqrt {x}}}\ dx={\sqrt {\frac {\pi }{2}}}}
0 sin x x p   d x = π 2 Γ ( p ) sin ( p π / 2 ) , 0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x^{p}}}\ dx={\frac {\pi }{2\Gamma (p)\sin(p\pi /2)}},\quad 0<p<1}
0 cos x x p   d x = π 2 Γ ( p ) cos ( p π / 2 ) , 0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {\cos x}{x^{p}}}\ dx={\frac {\pi }{2\Gamma (p)\cos(p\pi /2)}},\quad 0<p<1}
0 sin a x 2 cos 2 b x   d x = 1 2 π 2 a ( cos b 2 a sin b 2 a ) {\displaystyle \int _{0}^{\infty }\sin ax^{2}\cos 2bx\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}(\cos {\frac {b^{2}}{a}}-\sin {\frac {b^{2}}{a}})}
0 cos a x 2 cos 2 b x   d x = 1 2 π 2 a ( cos b 2 a + sin b 2 a ) {\displaystyle \int _{0}^{\infty }\cos ax^{2}\cos 2bx\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}(\cos {\frac {b^{2}}{a}}+\sin {\frac {b^{2}}{a}})}
0 π 2 ln ( cos ( x ) ) d x = 0 π 2 ln ( sin ( x ) ) d x = π 2 ln ( 2 ) {\displaystyle \int _{0}^{\frac {\pi }{2}}\ln(\cos(x))\,dx=\int _{0}^{\frac {\pi }{2}}\ln(\sin(x))\,dx=-{\frac {\pi }{2}}\ln(2)}

Bestämda integraler som innehåller exponentiella funktioner

0 e a x cos b x d x = a a 2 + b 2 {\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,dx={\frac {a}{a^{2}+b^{2}}}}
0 e a x sin b x d x = b a 2 + b 2 {\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,dx={\frac {b}{a^{2}+b^{2}}}}
0 e a x sin b x x d x = tan 1 b a {\displaystyle \int _{0}^{\infty }{\frac {{}e^{-ax}\sin bx}{x}}\,dx=\tan ^{-1}{\frac {b}{a}}}
0 e a x e b x x d x = ln b a {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x}}\,dx=\ln {\frac {b}{a}}}
0 e a x 2 d x = 1 2 π a {\displaystyle \int _{0}^{\infty }{e^{-ax^{2}}}\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}}
0 e a x 2 cos b x d x = 1 2 π a e b 2 / 4 a {\displaystyle \int _{0}^{\infty }{e^{-ax^{2}}}\cos bx\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{-b^{2}/4a}}
0 e ( a x 2 + b x + c ) d x = 1 2 π a e ( b 2 4 a c ) / 4 a   erfc b 2 a ,  där  erfc ( p ) = 2 π p e x 2 d x {\displaystyle \int _{0}^{\infty }e^{-(ax^{2}+bx+c)}\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{(b^{2}-4ac)/4a}\ \operatorname {erfc} {\frac {b}{2{\sqrt {a}}}},{\text{ där }}\operatorname {erfc} (p)={\frac {2}{\sqrt {\pi }}}\int _{p}^{\infty }e^{-x^{2}}\,dx}
+ e ( a x 2 + b x + c )   d x = π a e ( b 2 4 a c ) / 4 a {\displaystyle \int _{-\infty }^{+\infty }e^{-(ax^{2}+bx+c)}\ dx={\sqrt {\frac {\pi }{a}}}e^{(b^{2}-4ac)/4a}}
0 x n e a x   d x = Γ ( n + 1 ) a n + 1 {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\ dx={\frac {\Gamma (n+1)}{a^{n+1}}}}
0 x m e a x 2   d x = Γ [ ( m + 1 ) / 2 ] 2 a ( m + 1 ) / 2 {\displaystyle \int _{0}^{\infty }x^{m}e^{-ax^{2}}\ dx={\frac {\Gamma [(m+1)/2]}{2a^{(m+1)/2}}}}
0 e a x 2 b / x 2   d x = 1 2 π a e 2 a b {\displaystyle \int _{0}^{\infty }e^{-ax^{2}-b/x^{2}}\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{-2{\sqrt {ab}}}}
0 x e x 1   d x = ζ ( 2 ) = π 2 6 {\displaystyle \int _{0}^{\infty }{\frac {x}{e^{x}-1}}\ dx=\zeta (2)={\frac {\pi ^{2}}{6}}}
0 x n 1 e x 1   d x = Γ ( n ) ζ ( n ) {\displaystyle \int _{0}^{\infty }{\frac {x^{n-1}}{e^{x}-1}}\ dx=\Gamma (n)\zeta (n)}
0 x e x + 1   d x = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = π 2 12 {\displaystyle \int _{0}^{\infty }{\frac {x}{e^{x}+1}}\ dx={\frac {1}{1^{2}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}-{\frac {1}{4^{2}}}+\dots ={\frac {\pi ^{2}}{12}}}
0 sin m x e 2 π x 1   d x = 1 4 coth m 2 1 2 m {\displaystyle \int _{0}^{\infty }{\frac {\sin mx}{e^{2\pi x}-1}}\ dx={\frac {1}{4}}\coth {\frac {m}{2}}-{\frac {1}{2m}}}
0 ( 1 1 + x e x ) d x x = γ {\displaystyle \int _{0}^{\infty }({\frac {1}{1+x}}-e^{-x}){\frac {dx}{x}}=\gamma }
0 e x 2 e x x   d x = γ 2 {\displaystyle \int _{0}^{\infty }{\frac {e^{-x^{2}}-e^{-x}}{x}}\ dx={\frac {\gamma }{2}}}
0 ( 1 e x 1 e x x ) d x = γ {\displaystyle \int _{0}^{\infty }({\frac {1}{e^{x}-1}}-{\frac {e^{-x}}{x}})dx=\gamma }
0 e a x e b x x sec p x   d x = 1 2 ln b 2 + p 2 a 2 + p 2 {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x\sec px}}\ dx={\frac {1}{2}}\ln {\frac {b^{2}+p^{2}}{a^{2}+p^{2}}}}
0 e a x e b x x csc p x   d x = tan 1 b p tan 1 a p {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x\csc px}}\ dx=\tan ^{-1}{\frac {b}{p}}-\tan ^{-1}{\frac {a}{p}}}
0 e a x ( 1 cos x ) x 2   d x = cot 1 a a 2 ln ( a 2 + 1 ) {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}(1-\cos x)}{x^{2}}}\ dx=\cot ^{-1}a-{\frac {a}{2}}\ln(a^{2}+1)}
e x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}}
x 2 ( n + 1 ) e x 2 / 2 d x = ( 2 n + 1 ) ! 2 n n ! 2 π n = 0 , 1 , 2 , {\displaystyle \int _{-\infty }^{\infty }x^{2(n+1)}e^{-x^{2}/2}\,dx={\frac {(2n+1)!}{2^{n}n!}}{\sqrt {2\pi }}\quad n=0,1,2,\ldots }
0 + x e x 3 d x = 1 3 Γ ( 2 3 ) {\displaystyle \int _{0}^{+\infty }{xe^{-x^{3}}\,dx}={\frac {1}{3}}\Gamma \left({\frac {2}{3}}\right)}

Bestämda integraler som innehåller logaritmiska funktioner

0 1 x m ( ln x ) n d x = ( 1 ) n n ! ( m + 1 ) n + 1 m > 1 , n = 0 , 1 , 2 , {\displaystyle \int _{0}^{1}x^{m}(\ln x)^{n}\,dx={\frac {(-1)^{n}n!}{(m+1)^{n+1}}}\quad m>-1,n=0,1,2,\ldots }
0 1 ln x 1 + x d x = π 2 12 {\displaystyle \int _{0}^{1}{\frac {\ln x}{1+x}}\,dx=-{\frac {\pi ^{2}}{12}}}
0 1 ln x 1 x d x = π 2 6 {\displaystyle \int _{0}^{1}{\frac {\ln x}{1-x}}\,dx=-{\frac {\pi ^{2}}{6}}}
0 1 ln ( 1 + x ) x d x = π 2 12 {\displaystyle \int _{0}^{1}{\frac {\ln(1+x)}{x}}\,dx={\frac {\pi ^{2}}{12}}}
0 1 ln ( 1 x ) x d x = π 2 6 {\displaystyle \int _{0}^{1}{\frac {\ln(1-x)}{x}}\,dx=-{\frac {\pi ^{2}}{6}}}
0 π ln ( 1 2 α cos x + α 2 ) d x = 2 π ln | α | {\displaystyle \int _{0}^{\pi }\ln(1-2\alpha \cos \,x+\alpha ^{2})\,dx=2\pi \ln |\alpha |}

Bestämda integraler som innehåller hyperboliska funktioner

0 sin a x sinh b x   d x = π 2 b tanh a π 2 b {\displaystyle \int _{0}^{\infty }{\frac {\sin ax}{\sinh bx}}\ dx={\frac {\pi }{2b}}\tanh {\frac {a\pi }{2b}}}

0 cos a x cosh b x   d x = π 2 b 1 cosh a π 2 b {\displaystyle \int _{0}^{\infty }{\frac {\cos ax}{\cosh bx}}\ dx={\frac {\pi }{2b}}{\frac {1}{\cosh {\frac {a\pi }{2b}}}}}

0 x sinh a x   d x = π 2 4 a 2 {\displaystyle \int _{0}^{\infty }{\frac {x}{\sinh ax}}\ dx={\frac {\pi ^{2}}{4a^{2}}}}


Referenser

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, List of definite integrals, 24 november 2013.